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ABSTRACT

The declining cost and rising penetration of solar energy is poised

to fundamentally impact grid operations, as utilities must con-

tinuously offset, potentially rapid and increasingly large, power

fluctuations from highly distributed and “uncontrollable” solar sites

to maintain the instantaneous balance between electricity’s supply

and demand. Prior work proposes to address the problem by design-

ing various policies that actively control solar power to optimize

grid operations. However, these policies implicitly assume the pres-

ence of “smart” solar modules capable of regulating solar output

based on various algorithms. Unfortunately, implementing such

algorithms is currently not possible, as smart inverters embed only

a small number of operating modes and are not programmable.

To address the problem, this paper presents the design and im-

plementation of a software-defined solar module, called Helios.

Helios exposes a high-level programmatic interface to a DC-DC

power optimizer, which enables software to remotely control a

solar module’s power output in real time between zero and its

current maximum, as dictated by the Sun’s position and weather.

Unlike current smart inverters, Helios focuses on enabling direct

programmatic control of real solar power capable of implementing

a wide range of control policies, rather than a few highly-specific

operating modes. We evaluate Helios’ performance, including its

latency, energy usage, and flexibility. For the latter, we implement

and evaluate a wide range of solar control algorithms both in the

lab, using a solar emulator and programmable load, and outdoors.
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1 INTRODUCTION

Due to its continuously declining cost, solar generation capacity

is rapidly expanding, with the aggregate amount increasing 50%

worldwide in just the last year from 50GW to 76GW [16]. The

increase is largely due to a steady drop in the cost of solar mod-

ules, which decreased by 2× from 2009 to 2015 (from ∼$8/W to

∼$4/W) [7]. Utilities and governments are responding to rising

solar penetration in multiple ways. Since solar is typically installed

“behind themeter” and, similar to demand, viewed as uncontrollable,

many utilities are altering their generation portfolio to include more

small “peaking” generators with fast start-up times and high ramp

rates to better compensate for large solar fluctuations. Unfortu-

nately, these peaking generators are much less efficient—in terms

of both cost and carbon emissions—than intermediate and baseload

generators. In parallel, governments are defining complex intercon-

nection policies that determine who can connect solar modules to

the grid. In the U.S., these policies vary widely by state, but gen-

erally place hard caps on the total solar capacity that can connect

to the grid. After reaching these caps, users can no longer connect

solar to the grid until the caps are raised, which may take months-

to-years. For example, homeowners in Hawaii were recently barred

from connecting solar for more than two years [5, 10].

Rather than prevent users from connecting solar to the grid, an

alternative approach is to let anyone connect solar to the grid, and

then actively regulate or control the solar power fed into the grid

in real time. This approach is reminiscent of congestion control

in the Internet, which enables anyone to connect, but then rate-

limits traffic, using transport protocols such as TCP, to ensure the

network does not collapse and users receive their fair share of the

bandwidth. Such an approach, when applied to solar rate control,

effectively transforms solar modules into small “dispatchable” gen-

erators similar to fuel-based mechanical generators, albeit with

some important differences. For example, while solar enables more

precise and rapid control than mechanical generators, its maximum

capacity is not static, but is a function of the time and weather.

There has been a significant amount of recent prior that has argued

for such dynamic solar congestion control algorithms in the context

of smart solar arrays. This ensemble of work proposes mechanisms

and policies that use dynamic solar power curtailment to meet

a variety of different objectives, including maintaining constant

power [13, 14], providing voltage/frequency stability [12, 15], im-

proving grid reliability under high solar penetration [8], ensuring

fairness [3, 4, 13], and preserving energy data privacy [11].

However, these policies implicitly assume the presence of “smart”

solar modules or arrays capable of regulating their output program-

matically in real time based on well-defined algorithms. Unfortu-

nately, there is currently no way to implement such algorithms, as

smart inverters embed only a small number of operating modes,
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primarily focused on improving AC power quality and grid relia-

bility, and are not programmable. Thus, the policies above were

evaluated in simulation and never implemented.

To address the problem, this paper presents the design and im-

plementation of a programmable software-defined solar module,

called Helios. Helios exposes a high-level programmatic interface

to a DC-DC power optimizer, which enables software to remotely

control a solar module’s power output between zero and its current

maximum, which is dictated by the Sun and weather. Unlike current

smart inverters, Helios focuses on enabling direct programmatic

control of real solar power capable of implementing a wide range

of control policies and protocols, rather than a few highly-specific

operating modes. The operating modes implemented by smart in-

verters typically focus on improving AC power quality and grid

reliability, and are not related to current policies for managing so-

lar penetration. Note that Helios’ solar control is not intended to

replace the use of energy storage. However, in most case, energy

storage remains too expensive to install and maintain at most small-

scale solar sites. Helios is orthogonal to existing demand response

programs that regulate loads to balance grid supply and demand.

Helios effectively enables similar capabilities for solar.

We implement a Helios prototype, which includes a library that

exposes a simple programmatic interface and enables fine-grained

control of solar module output. Helios is self-powered using power

harvested from the solar module. We describe the programmatic

interface in detail in §3. We evaluate both Helios’ platform perfor-

mance and its flexibility. Our performance evaluation focuses on

Helios’ basic functions, including its energy usage and response

latency. To evaluate flexibility, we implement multiple solar control

policies proposed in prior work, including constant power genera-

tion [13, 14], Weighted Power Point Tracking (WPPT) [13], and load

imitation for privacy [6, 9, 11], as well as develop and implement

new algorithms, such as constant net metering and ramp rate con-

trol. We show that Helios admits simple implementations for each

these algorithms. Our hypothesis is that Helios is simple, reliable,

and cheap, and its interface enables the implementation of a wide

range of solar control algorithms. In evaluating our hypothesis, we

make the following contributions.

Solar Control Background. We describe the basic functions He-

lios uses to enable solar control. We then outline the potential

benefits of dynamic solar control to grid operations, and place

Helios in context with emerging work on smart inverters, which

leverage inverters to improve grid reliability and power quality.

Helios Design and Implementation. We present Helios’ design

and implementation, which exposes a simple programmatic API

that applications use to control solar output. We then describe the

implementation of multiple solar control algorithms atop this API.

Experimental Evaluation. We evaluate Helios’ performance and

energy usage, as well as the algorithms we implement. To enable

repeatability, in addition to outdoor experiments, we also use a solar

array simulator (the Chroma 62000H-S), which mimics solar’s cur-

rent response to voltage changes and replays solar I-V curves from

weather data traces. Our results show that Helios consumes little

energy (<1.6W), is able to precisely and nearly instantly control

solar output, enabling a wide range of higher-level applications.

2 BACKGROUND

Grid-tied solar deployments consist of multiple solar modules wired

together and interconnected with the grid via one or more inverters,

which convert the low-voltage DC power generated by the mod-

ules to the higher voltage (120V) AC power of the grid. Most solar

deployments use inverters to connect to the grid, since this enables

them to feed surplus solar energy into the grid and relieves them of

having to locally balance electricity’s supply and demand. In con-

trast, standalone solar deployments that are not grid-tied require

energy storage, generally in the form of a battery, to store surplus

solar energy and balance supply and demand. Since batteries are

expensive to install and maintain, there are few standalone solar

deployments with batteries. In addition, most solar deployments

consist of arrays of multiple connected solar modules. The output

of these modules is dependent, not only on the solar irradiance

incident on them, but also the module wiring and the placement

of the inverters. In particular, solar deployments generally include

electronics that perform Maximum Power Point Tracking (MPPT)

algorithms, which dynamically adjust the operating voltage to ex-

tract the maximum power from the module (or array).

MPPT and Solar Array Architectures. The power output of a

photovoltaic (PV) panel is governed by its I-V curve, which defines

the relationship between a solar module’s output current (I) and

its operating voltage (V), as depicted in Figure 1. Any operating

voltage, up to the maximum shown, can be chosen to operarate

the panel, and the I-V curve dictates the current output for that

operating voltage, which in turn determines the power that will be

generated by the panel. The nature of the I-V curve is such that, as

the operating voltage increases, the output current remains steady

up to a knee point, after which it begins to decrease. Since the

output power generated is the product of voltage and current, the

power produced for different operating voltages, depicted by the I-V

curve in Figure 1 , increases monotonically until the knee, which

represents the maximum possible power that the solar module

can generation, which is referred to as the maximum power point

(MPP). Importantly, the MPP is not static, since a module’s I-V curve

continuously changes based on the incident solar irradiance, which

is a function of many factors, including weather, time, temperature,

shading, dust, snow, etc. In addition, a solar array’s I-V curve can

be highly complex, as it is an additive combination of the I-V curves

of the underlying modules. Nearby modules may also experience

different conditions that cause their I-V curves to differ significantly,

e.g., such as a shadedmodule next to amodule without shade, which

also contributes to the complexity.

Since module and array dynamics are impossible to predict a

priori, MPPT algorithms continuously search for the operating volt-

age that yields the MPP. The most common algorithm is Perturb

and Observe (P&O), which simply searches for the MPP by per-

turbing the operating voltage by a small amount and measuring

the current to compute a new power (P(t)). If this new power is

greater than P(t − 1), the algorithm changes the voltage again in

the same direction; however, if the new power is less than P(t − 1),

then the algorithm reverses the direction of change. While more

advanced MPPT algorithms that converge faster exist, in most in-

stances, P&O is fast enough, often converging in less than one
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Figure 1: Idealized I-V and P-V curves for a solar module.

cycle of the grid’s 60Hz frequency. As a result, most MPPT chips,

including the SM72442 that Helios uses, employ P&O for MPPT.

MPPT algorithms and inverters can be integrated into solar ar-

rays using multiple architectures. For example, the traditional con-

figuration directly wires solar modules together and connects them

to a centralized, i.e., string, inverter, which both executes MPPT and

converts solar’s DC input to AC output synchronized to the grid’s

frequency and phase. However, this approach is inefficient as the

string inverter is only able to find the MPP of the entire array and

not each module. As a result, the current output of modules wired

in series will be limited by the current of the lowest producing

module, i.e., the most shaded module. Thus, another approach is to

use microinverters at each module, which also execute MPPT as

well as convert DC to grid-synchronized AC. Microinverters are an

example of Module-Level Power Electronics (MLPE) that improve

efficiency, since they enable each module to independently optimize

its own MPP. However, microinverters are expensive, especially

for large-scale deployments, as they replicate the complex inverter

electronics across every module. Microinverters are also viewed as

less reliable, since, unlike with a string inverter, which is typically

placed inside, they are attached to the module and subject to harsh

weather conditions. Thus, another architecture has emerged that

uses DC power optimizers, which, like microinverters, enable each

module to operate at its MPPT. However, unlike microinverters,

DC power optimizers only execute MPPT and do not convert DC

to AC, instead relying on a separate, often centralized, inverter.

There are numerous tradeoffs between solar architectures based

on string inverters, microinverters, and DC power optimizers. We

chose to design Helios as a programmable DC power optimizer for

multiple reasons. First, power optimizers are simpler, cheaper, and

more reliable than microinverters because they have fewer sensitive

electronic components, and perform a narrower set of functions.

In addition, power optimizers are not grid-facing and capable of

controlling solar output independent of grid-quality metrics, which

are the focus of much of the existing work on smart inverters. That

is, power optimizers are orthogonal to, and do not interfere with,

many of the grid power quality optimizations being implemented

in smart inverters. There are many grid-quality support functions

inverters can provide, such as reactive power compensation and

voltage/frequency ride through, that are not related to regulating

solar power output. In the U.S., many of these functions are strictly

regulated by local ISOs and RTOs. Since power optimizers are not

grid-facing and focus on real power, they are not subject to the

same regulations as smart inverters, i.e., IEEE 1547-2018 [1].

Helios Motivation. Helios’ basic approach leverages the same

voltage control mechanisms as the MPPT algorithms already in-

cluded in DC power optimizers. However, rather than search for

the voltage that yields the MPP, Helios enables applications to set

the output voltage such that it yields any power point between zero

and the maximum power. Since only solar’s MPP is intermittent,

based on environmental conditions, Helios enables applications to

precisely and rapidly control power output below the MPP.

Helios is broadly related to solar and wind curtailment, which

focuses on disconnecting large solar and wind farms from the grid

during off-peak times when their energy is not needed, i.e., when

prices go negative. However, solar and wind curtailment is gen-

erally a coarse mechanism used as a last resort to preserve grid

reliability. In contrast, Helios exposes mechanisms that enable fine-

grained control of solar output at the module level. We initially

expect these mechanisms to be useful in setting solar net metering

policies. Current policies are static, and limit the aggregate capacity

of deployments that can connect to the grid, even though these

deployments rarely, if ever, generate their rated capacity. Helios

would enable new dynamic policies that actively rate limit the solar

power injected into the grid, as discussed in recent work [3].

In addition, the presence of rate-limited solar deployments oper-

ating below their MPP opens up a new high-quality form of reserve

capacity for the grid. That is, the grid can call on this capacity

instantaneously, i.e., at sub-second scales, if necessary to satisfy

unexpected increases in demand. In this sense, solar represents

much higher quality reserve capacity than mechanical generators,

which may take minutes to tens of minutes to activate. In addi-

tion, mechanical generators operated as reserve capacity must be

constantly maintained and tested to ensure their correct operation.

Similar maintenance and testing for solar is less costly. In some

sense, Helios can be thought of as enabling the equivalent of de-

mand response for solar by exposing mechanisms for utilities (or

others) to remotely decrease (or increase up to the MPP) the solar

supply. However, unlike existing demand response resources, such

as air conditioners and heaters, solar control is transparent to users.

Current work on “smart” solar functions have focused on smart

inverters. However, there are no commercial offerings similar to He-

lios that provide remote programmatic control of solar output. As

discussed earlier, smart inverter functions are governed by strict reg-

ulations, and generally focus on implementing specific approved op-

erating modes that support grid reliability. These operating modes

are generally not programmable, and target AC power quality func-

tions and not power generation. While the lack of programmability

is likely due to the stringent regulations around grid-facing equip-

ment, it does hinder grid innovation, especially as the grid evolves

into a more decentralized architecture. As we show, Helios is capa-

ble of implementing a wide range of solar control algorithms, and

also serves a platform for developing new algorithms.

3 HARDWARE AND SOFTWARE DESIGN

We describe both the hardware and software design of Helios, our

programmatic software-defined solar module, below.

3.1 Hardware Design

Our hardware design consists of four primary components: a pro-

grammatic MPPT chip (the SM72442), a DC-DC converter, a DC

power supply, and a processing and communication platform, as

shown in the block diagram in Figure 2(left). The output of the
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Figure 2: Helios block diagram (left), board layout (middle), and circuit diagram (right).

solar module first connects to a DC-DC converter, which itself con-

nects to the MPPT chip. By default, the chip executes the MPPT

algorithm, which controls the DC-DC converter to maintain the

module’s operating voltage at the MPP, e.g., the knee of the curve

from Figure 1. While the DC-DC converter varies the operating

voltage, it maintains a fixed output voltage using a buck-boost

converter, enabling it to connect to other devices requiring a fixed

voltage, such as other modules, an inverter, or a battery.

The MPPT algorithm is embedded into the MPPT chip (the

SM72442), which also provides a programmatic interface to set

thresholds via registers for the module’s maximum output voltage

and current, as we discuss in §3.1.1. A network-connected embed-

ded processor connected to the MPPT chip is capable of controlling

these thresholds via software using the chip’s low-level API. The

platform need not be connected to external power as it runs on

power harvested from the solar module via a DC power supply. The

design admits a compact implementation, intended to be encased

and installed in the rear of the panel. Figure 2(middle) shows the

board layout of our current prototype with the major components

labeled. We are currently fabricating a Printed Circuit Board (PCB),

which enables a more compact layout. Figure 2(right) shows the

circuit diagram with the precise connections between each of the

components. Below, we discuss each of the major components.

3.1.1 Programmable MPPT Chip. Many commercial integrated

circuits (ICs) implement MPPT, but few expose dynamic control

over a solar module’s output voltage and current. To the best of

our knowledge, TI’s SM72442 is the only MPPT controller IC that

exposes a programmatic interface that enables such control. TI

has an evaluation board (the SM3320) that uses the SM72442’s con-

trol interface as part of a battery charge controller, which steadily

reduces current as the battery voltage rises (indicating that it is

nearing full capacity). Other similar evaluation boards exist for

battery charge controllers, which also enable setting current limits

based on voltage, but they do so in hardware, enforce only a single

limiting policy (for a particular battery), and are not programmable.

The SM72442 chip is also used for remote on/off control and stan-

dard MPPT in some DC solar power optimizers. However, there are

no commercial products that expose the chip’s full functions for

dynamic control over a solar module’s output voltage and current.

The key components of the SM72442 IC are its MPPT controller,

Analog-to-Digital Converter (ADC) controller, and I2C module,

which enables serial communication to configure the chip. The

chip implements the P&O MPPT algorithm, which generates the

pulse-wide modulation (PWM) signal that varies the duty cycle of

the DC-DC converter (described below) to determine the module

operating voltage that maximizes solar power output. The chip’s

digital controller logic also implements the voltage/current limiting

functions. These functions also generate a PWM signal, which

varies the duty cycle of the DC converter, but instead does so to

enforce a limit on current or voltage, rather than maximize power.

The current and voltage limiting functionality requires an algorithm

similar to MPPT, as it must also vary the operating voltage as the

I-V curve changes to enforce the limit [13]. Thus, the chip uses a

similar P&O algorithm as MPPT to maintain a current, voltage, or

power limit. If the maximum solar output falls below the power

limit, then the chip falls back to MPPT and maximizes power. The

MPPT algorithm converges rapidly, and is able to track a module’s

MPP within 12ms, or less than the length of a single 60Hz AC cycle.

The chip’s ADC controller controls an 8-channel, 12-bit ADC

used to sense the input and output voltage and current, as well as set

the chip’s configuration. The controller exposes four A/D channels

used to configure the maximum current and voltage thresholds, the

conditions at startup, and the output voltage slew rate, i.e., the rate

at which voltage is allowed to change. However, the I2C module

provides an interface to override these external A/D channels and

configure the chip using the SM72442’s internal registers. Our

design overrides the external A/D channels and programmatically

configures the chip using these registers. There is a 10-bit field in

the register for setting each of the maximum output voltage and

current thresholds. Similarly, all of the other settings for the MPPT

chip can be configured via these registers. The chip’s API also

enables monitoring of the instantaneous input and output voltage

and current. As we discuss, our software API includes functions

that expose these sensor values to higher-level applications.

3.1.2 DC-DC converter. Our DC-DC converter is a standard

buck-boost converter that can increase or decrease a solar module’s

output voltage to a desired output voltage. In addition, the converter

works in conjunctionwith the SM72442’s algorithm above to control

the module’s power output. In particular, the converter acts as

a load on the solar module, whose resistance can be controlled

between zero and ∞ by varying the converter’s duty cycle. In

this case, a duty cycle of zero represents infinite resistance and

voltage (resulting in zero output current and power), while a duty

cycle of one represents zero resistance and voltage (resulting in

short-circuit output current and zero power). The SM72442’s MPPT

and limiting algorithm adjust the module’s voltage along the I-V
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curve by altering the DC-DC converter’s duty cycle between these

extremes, and observing the resulting current and power output.

The core of the buck-boost converter is an inductor combined

with high frequency switches, which control the charging and

discharging of the inductor that ultimately dictates the resistance

and input/output voltage. We use IRF3205 N-channel MOSFETs as

switches. In our prototype, these have a current rating of 110A and

voltage rating of 50V, and thus can accommodate standard 300W

solar modules. However, the voltage level and current provided

by the SM72442 MPPT chip is not high enough to directly drive

the switches at high frequency. As a result, we also use a MOSFET

driver chip, the SM72295, to translate the 5V from the MPPT chip

(SM72442) to the 10V required to drive the switches and provide

high enough current for fast switching. In addition, the MOSFET

driver chip provides amplifiers for input/output current sensing that

removes ripple current and provides averaged current data to the

MPPT chip. The buck-boost converter also uses snubber circuits at

its input and output to reduce voltage ripples. The MOSFET driver

chip has buffered outputs available to provide both isolation and

an interface to the current sense pin of the MPPT chip. Since the

MOSFET switches are rated at 175C, we use heatsinks with them, as

Helios’ operating temperate may exceed this when placed behind a

module installed on a roof under intense sunlight.

3.1.3 Sensing Circuitry. TheMPPT chip (SM72442) requiresmea-

surements of both the solarmodule’s and the buck-boost converter’s

output voltage and current as inputs to the dynamic MPPT and

current/voltage limiting algorithm. The voltage sensing at both

points is done using a resistor divider circuit that scales the maxi-

mum voltage to ∼4V, which is 80% of the full scale A/D input. We

introduce this rough limit to avoid high voltage at the SM72442 pins

and possible burn out. The current sensing at both points is done

using 0.04Ω sense resistors. We use the current sense amplifiers of

the SM72295 MOSFET driver chip set to 0.44V/A gain, and filter

the voltage across the sense resistors. Finally, the buffered output

from the MOSFET driver chip is fed to the SM72442 MPPT chip.

3.1.4 DC Power Supply. Our design powers all components

using the available solar power. We first use a DC-DC switching

regulator IC (the SM72485) to step-down solar module voltage to

10V, which is required by the MOSFET driver chip for switching the

MOSFETs. We then use a low power 5V regulator (the SM72238),

to further step down the voltage for powering the SM72442 and

our processor (the Raspberry Pi Zero). We design the DC power

supply circuitry to work with solar modules having an open circuit

voltage in the range of 9V to 50V, which is compatible with standard

residential and commercial solar module capacities.

3.1.5 Processing and Communication Platform. Rather than an

embedded microcontroller, our design leverages a Raspberry Pi

Zero (W), which includes a built-in WiFi module. The Raspberry Pi

zero is low power, low cost (∼$10), and supports a standard Linux

software stack. We select this full-featured platform to both enable

advanced control algorithms that require non-trivial local compu-

tation, such as advanced solar forecasting techniques, and to ease

programmability by exposing a high-level programming environ-

ment, such as python, to developers. The platform includes a 1Ghz

single-core CPU, 512MB RAM, an 802.11 b/g/n wireless module and

consumes a maximum of 170mA at 5V (or 0.85W) when WiFi is

activated. The platform also includes an I2C interface enabling it

to communicate with the SM72442 MPPT chip’s I2C interface. We

set the baud rate of the I2C bus to 100kHz to enable high speed

monitoring and updates of voltage and current limits. Network con-

nectivity is important to enable remote programmability. In cases

where WiFi does not penetrate roofs, using powerline networking

or the cell network are options, although our current prototype

does not support them. In a solar array, as long as one solar mod-

ule has WiFi connectivity, e.g., one near a window, it can act as a

gateway for an ad hoc mesh network that connects the others.

3.2 Software Design

The Raspberry Pi platform above runs a full Linux software stack,

including python and various drivers that interact with the MPPT

chip. Our software includes a python library that exposes a simple

API to developers. The API’s functions use the smbus library pro-

tocol to write the required register values to the SM7442. Table 1

shows the five primary functions in this API, which mostly consist

of getter and setter methods. The init() function initializes the

SM72442 MPPT chip and sets the appropriate configuration bits in

its registers to override the external ADC channels, enabling soft-

ware control of its functions. The ping() function simply checks if

the MPPT chip is alive and responding to commands.

TheAPIs’ three key functions focus on setting a solar power limit,

monitoring power output, and retrieving themaximum power point.

setPowerLimit(int) takes a power value in Watts as input and

configures the MPPT chip to limit solar output to that value. Note

that setting the power limit to any value below zero or beyond the

MPP causes the MPPT chip to fall back to tracking the MPP. Our

prototype enables software to set power limits at the granularity of

a Watt, which should be sufficient for standard modules with max-

imum capacities on the order of 300W. Likewise, getPowerOut()
returns the current output power in Watts; if a limit is set, then this

value should be at the limit, since there is little imprecision in the

tracking algorithm. Finally, getPowerMax() returns the current

MPP. This meta-function configures the MPPT chip to perform

MPPT, stores the MPP value and then resets the power limit, if any,

before returning to the MPP. We include this meta-function as it is

often useful to know how much solar power we are curtailing.

Table 2 lists some additional auxiliary functions the API supports

These functions generally enable setting voltage and current limits

separately, as well as getting voltage and current at Helios’ input (at

the solar module) and output (at the inverter/battery), as well as the

current/voltage limit settings and the current/voltage at the MPP.

Note that we label the return values of these functions as dynamic if

they represent a dynamic system measurement determined by the

environment, and not a stored value. Our software packages these

functions into a helios python library that software running locally
can import. In addition, we also wrote a small server in python that

exposes these functions remotely via a REST API, which enables

remote control by an external client. We present the REST API,

in Tables 1 and 2, where 127.0.0.1 can be replaced with Helios’

IP address. Such remote control may be useful for coordinating

control of multiple modules, where they communicate to perform

various tasks such as enforcing aggregate limit across distributed
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Function REST API Description Type

setPowerLimit(int) POST 127.0.0.1:5000/helios/P:<int limit> set power limit -

getPowerOut() GET 127.0.0.1:5000/helios/power-out get output power dynamic

getPowerMax() GET 127.0.0.1:5000/helios/power-max get MPP power dynamic

init() POST 127.0.0.1:5000/helios/init initializes platform -

ping() POST 127.0.0.1:5000/helios/ping checks chip status -

Table 1: Helios Library Primary Functions

Function REST API Description Type

setVoltageLimit(int) POST 127.0.0.1:5000/helios/V:<int limit> set maximum voltage -

setCurrentLimit(int) POST 127.0.0.1:5000/helios/I:<int limit> set maximum current -

getVoltageLimit() GET 127.0.0.1:5000/helios/voltage-limit get maximum voltage static

getCurrentLimit() GET 127.0.0.1:5000/helios/current-limit get maximum current static

getVoltageOut() GET 127.0.0.1:5000/helios/voltage-out get output voltage dynamic

getCurrentOut() GET 127.0.0.1:5000/helios/current-out get output current dynamic

getVoltageIn() GET 127.0.0.1:5000/helios/voltage-in get input voltage dynamic

getCurrentIn() GET 127.0.0.1:5000/helios/current-in get input current dynamic

getVoltageMax() GET 127.0.0.1:5000/helios/voltage-max get MPP voltage dynamic

getCurrentMax() GET 127.0.0.1:5000/helios/current-max get MPP current dynamic

Table 2: Helios Library Auxiliary Functions

modules. While coordinating control of multiple Helios modules

presents an interesting research problem, it is outside the scope

of this paper. Note also that, while Helios is designed as a DC

power optimizer for an individual solar module, it can also work

with arrays of multiple solar modules (based on their aggregate I-V

curve), which eliminates the need to coordinate multiple modules.

4 IMPLEMENTATION CONSIDERATIONS

Challenges. We faced a number of challenges in Helios’ imple-

mentation. For example, at the end of each day the voltage output

of Helios’ DC power supply would not switch directly from its

required 10V/5V (for the Raspberry Pi and MPPT chip) to 0V, but

would drop below the required voltage. When applied to the MPPT

chip (SM72442) and the MOSFET driver chip (SM72295), such low

voltages would alter the chips’ configuration, which would persist

until the devices were powered back on the next day. To address the

problem, we save the configuration state in the Raspberry Pi and

reset its configuration at the start of each day. A similar problem

occurred during cloudy days, as voltage may drop below threshold

briefly due to clouds. To address intermittent drops, we added a

capacitor at the DC power supply as a buffer to store energy and

supply it to maintain voltage during cloudy periods.

Our implementation also required python’s smbus library to read

the MPPT chip’s registers. However, the chip’s communication

protocol requires “repeated start” functionality, which required

explicit activation within the smbus library to use. Specifically,

to read a register with “repeated start,” the address of the slave

devices and the target register first have to be written on the I2C

bus; only then will the device respond by sending the length of

data bytes followed by the register contents. This read sequence

requires the master to switch from initially writing to reading

without terminating the communication at the end of the first set

of writes, i.e., a “repeated start.” A standard write will not work, as

it terminates the communication before it switches to reading. This

basic protocol enables software running in the platform to control

the MPPT chip via its low-level interface.

Finally, the MPPT chip’s datasheet specifies that changing the

voltage and current limits requires writing a 10-bit field to a spe-

cific register. However, the datasheet did not specify how values

within this 10-bit field translate into decimal voltage and current

values. Thus, we had to reverse engineer the translation through

experimentation, e.g., by setting values and reading the voltage

output. Since the there were only 1024 values of the registers, it

was possible to set every value and observe its result.

Cost. Table 3 breaks down the cost of our prototype and Helios’

cost at scale. For comparison, a 300W SolarEdge power optimizer

(P300) currently costs ∼$60. Thus, Helios’ cost is in-line with cur-

rent power optimizers. While its at-scale cost is significantly less,

the cost of commercial products include additional costs beyond

hardware, e.g., marketing, certification, etc. However, our break-

down does indicate that Helios appears to be in the same cost range

as existing power optimizers that are not programmable.

5 EXPERIMENTAL EVALUATION

We evaluated Helios in emulation and using a deployed solar mod-

ule. Our emulation connects Helios to both a solar array simu-

lator (SAS) and a programmable DC load. The SAS acts like a

programmable power supply that mimics the electrical response

of an I-V curve. That is, the SAS enables us to configure a specific

I-V curve, such that when its operating voltage changes (due to the

attached load) it will alter its output current according the curve. In

contrast, a traditional DC power supply will not change its output

current in response to changes in voltage, but will instead maintain

a steady current (depending on its setting). We use the Chroma

62020H-150S as our SAS, which also supports a real-world weather

mode. This mode is capable of replaying solar radiation traces that

alter the maximum power point of the I-V curve to match the traces.

In our emulation, Helios sits between the SAS and a programmable

DC load, which is also able to replay power traces of demand. Fig-

ure 3 depicts our lab setup. Our real experiments simply replace

the SAS with a solar module. However, there are many drawbacks

to live experimentation, since they must be run outdoors subject
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Component 1x cost ($) 10,000x cost ($)

SM72442 11.68 5.31

SM72295 4.56 2.22

SM72485 3.19 2.16

Raspberry Pi 10 10

Inductor 10.19 7.71

MOSFETS 6.4 2.48

Other components 10 7

PCB development 10 1

Total $66.02 $37.88

Table 3: Helios cost breakdown

Figure 3: Emulation configuration with Helios sitting be-

tween a solar array simulator and a programmable DC load.

to real weather conditions (requiring weather-proofing) and are

not repeatable. Thus, most of our experiments use the SAS. We

run microbenchmarks to evaluate Helios’ response latency and

power consumption. However, Helios’ primary contribution is in

the flexibility it provides to implement a wide range of control

algorithms. To evaluate this, we conduct a number of case studies

that implement a wide variety of solar control algorithms proposed

in prior work, but never implemented.

5.1 Microbenchmarks

Response Latency. Helios’ response latency is significant as it

dictates its ramp rate, or the rate at which it can increase or de-

crease its power output. A conventional dispatchable generator’s

ramp rate is an important metric, since it determines how well

the generator can respond to changes in grid demand. We mea-

sure response latency by recording the time between calling Helios’

application-level function in python to set a power limit to when we

can verify that the power limit has been set. To verify the latter, we

call Helios’ application-level function to verify the current power

state. We ran 1000 experiments that altered the power limit in this

way, and found that the average latency to change power was 12ms

at 99th percentile with worst case latency of 34ms. This latency

was independent of the magnitude of the power changes, and less

than the 16.7ms cycle length of 60Hz AC power. These experiments

demonstrate that, from the perspective of the AC grid, Helios ef-

fectively enables an infinite ramp rate 99% of the time. Even the

worst case response of 34ms is multiple orders of magnitude less
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Figure 4: Power consumption vs call rate per second

Variable Description

P l imit
S

solar power limit

P
weiдht

S
solar power weight

Pmax
S

maximum solar power

PD (t ) grid demand at time t

P l imit
D

grid demand limit

α smoothing factor for EWMA

PT
S

solar power data over T

PH helios power output

Δ time between power updates

Table 4: Variable definitions for Algorithms 1-4

than the most agile conventional power generators, which take on

the order of minutes to ramp up.

Power Consumption. Helios’ power consumption ranges be-

tween 0.9W and 1.6W with the Raspberry Pi’s consumption alone

ranging between 0.7W and 0.8W. By contrast, the MPPT chip’s

power is insignificant, ranging from 0.08W to 0.1W depending on

its temperature. Figure 4 plots the power consumption as a function

of the function call rate to alter the power, which shows that the

power consumption is steady even under intensive use of the plat-

form and the MPPT chip, e.g., when changing power levels every

10ms. Since Helios is designed to support modules with capacity of

∼300W, its power consumption is insignificant. In addition, the low

power consumption should enable Helios to run for the entire day.

5.2 Case Studies

In our case studies, we use Helios to implement a wide range of solar

control algorithms. In each case, we list the algorithm’s pseudocode

when implemented using Helios. The variable definitions for this

pseudocode are shown in Table 4. Note that for our emulation

experiments, we use traces that report solar radiation every five

minutes. We accelerate our emulation experiments by 300× by

changing power every second based on the five minute values. Note

that accelerating the experiments stresses our prototypemuchmore

than in practice by increasing the frequency of power variations.

We quantify accuracy using the Mean Absolute Percentage Error

(MAPE) between the limit and the actual generation, as below. A

MAPE near 0% is better, as it indicates better accuracy.

MAPE =
100

T

T∑

t=0

|
P l imit
S

(t) − PH (t)

P l imit
S

(t)
| (1)

5.2.1 Constant Power Generation. The simplest possible “algo-

rithm” is to set and maintain a constant power output. Recent work

has proposed different various approaches to constant power gen-

eration [13, 14]. These approaches are similar to the algorithmic

variants of MPPT in that, while interesting, simple approaches, such

as P&O, are quite effective. Since our MPPT chip natively supports

69



BuildSys ’18, November 7–8, 2018, Shenzen, China Noman Bashir, David Irwin, and Prashant Shenoy

Algorithm 1 Constant Power Generation

Require: P l imit
S

1: Helios .init()
2: Helios .setPowerLimit(P l imit

S
)

Algorithm 2 Constant Net Metering

Require: P l imit
D

, PD (t)
1: Helios .init()
2: while (1) do

3: if (PD (t) > P l imit
D

) then

4: P l imit
S

= PD (t) − P l imit
D

5: else

6: P l imit
S

= 0

7: Helios .setPowerLimit(P l imit
S

)

8: sleep(Δ)

setting power limits using a modified P&O algorithm, and Helios’

API directly exposes this functionality, the Helios pseudocode in

Algorithm 1 for constant power generation is straightforward. Fig-

ure 5 demonstrates our constant power generation algorithm on

a sunny (a) and cloudy (b) day in emulation. In this case, we set

Helios to maintain a fixed power of 50W on a 100W solar panel’s

output. We also ran the algorithm outdoors on a real 100W panel

on a sunny day as well, although we only ran it for an hour, during

which solar radiation was relatively constant. These experiments

demonstrate that Helios, and its underlying MPPT chip’s algorithm,

are nearly perfect at maintaining constant power generation as the

MAPE is 1.06%, 1.13%, and 0.83% for the sunny day, cloudy day, and

outdoors, respectively.

5.2.2 Constant Net Metering. A slightly more complex algo-

rithm is constant net metering, which attempts to maintain con-

stant net power for a solar-powered building or home. Constant net

metering has multiple potential benefits. For example, while cur-

rent policies regulate grid-tied solar capacity to control its effect on

the grid, they are indirect. In contrast, regulating users’ net meter

demand would directly control users’ grid impact. In particular, by

regulating users’ net demand, governments could incentivize users

to alter their demand in response to their solar to minimize their

aggregate impact on the grid. Our constant net meter generation

algorithm (Algorithm 2) regulates a home’s net demand to maintain

it at a constant level and remove all variations in power. Prior work

proposes a similar approach to flattening a home’s net demand to

preserve user privacy by preventing utilities from applying energy

analytics algorithms, which analyze changes in a building’s power

to infer a range of behaviors, such as appliance usage and occu-

pancy [6, 9]. The primary difference here is that prior algorithms

use batteries or thermal energy storage, e.g., in water heaters, to

flatten demand, while Helios controls solar power.

Figure 6 demonstrates Helios maintaining a constant net meter

power. Here, the demand and net lines in the graph are negative

and we translate them up on the graph by 100W so that they do

not overlap with the positive solar generation. In this case, we

configure our algorithm to keep the net demand constant at 0W

Algorithm 3 Weighted Power Point Tracking (WPPT)

Require: P
weiдht
S

1: Helios .init()
2: while (1) do

3: Pmax
S

= Helios .дetPowerMax()
4: sleep(20ms)

5: P l imit
S

= P
weiдht
S

× PS

6: Helios .setPowerLimit(P l imit
S

)

7: sleep(Δ)

Algorithm 4 Solar Ramp Rate Control (SRRC)

Require: α , PT
S

1: Helios .init()
2: while (1) do

3: P l imit
S

= ewma(PT
S
,α)

4: Helios .setPowerLimit(P l imit
S

)

5: sleep(Δ)

for the home, such that it has zero impact on the grid. Note that

we have scaled down a real home’s demand by 10× to match it to

the solar emulator’s capacity. The dotted line shows how Helios

varies solar power to mirror demand and maintain the flat net

demand line in the middle. On the sunny day (a), Helios maintains

a nearly perfect net demand, while on the cloudy day (b), there are

a few periods where there is not enough solar power available to

completely flatten demand, resulting in some fluctuations in net

demand and a higher MAPE value, as shown in Table 5. We also ran

a proof-of-concept experiment outdoors over an hour on a sunny

day, where Helios was able to maintain a flat net demand with a

low MAPE, as there were no fluctuations in solar power.

5.2.3 Weighted Power Point Tracking. WPPT is a recently pro-

posed solar control algorithm that enables users to apply a percent-

age weight to their output, such that their solar output is regulated

to be a specified percentage of their maximum output [13]. WPPT

is inspired by similar approaches to proportional sharing in com-

puter systems and networks, which allocate users a fraction of

the available resources. Similarly, WPPT enables higher-level al-

gorithms that both regulate aggregate solar power and ensure all

users are able to generate the same fraction of power relative to

their maximum capacity [3]. Since WPPT requires knowing the

actual MPP and then backing off by a certain fraction, Helios’ al-

gorithm periodically finds the MPP, multiplies it by the fractional

weight, and then sets the appropriate limit. Algorithm 3 shows

the pseduocode for WPPT in Helios. Figure 7 shows the results of

WPPT. The periodic spikes upward represent points where Helios

searches for an updated MPP before scaling back. In this case, we

set the weight equal to 50% and search every five seconds for a

new MPP. As the graphs show, on a cloudy day (b) with frequent

variations, WPPT is less accurate at maintaining its limit than on

sunny days and has a higher MAPE, as in (a) and (c), with fewer

variations and lower MAPE, as given in Table 5.

5.2.4 Solar Ramp Rate Control. Helios also enables new algo-

rithms. Here, we describe an algorithm we developed to dampen
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Figure 5: Helios is nearly perfect at maintaining a constant power, in this case, of 50W in various scenarios.
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Figure 6: Helios maintaining a constant net power at 0W.
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Figure 7: Helios performing Weighted Power Point Tracking (WPPT).
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Figure 8: Helios executing an algorithm to dampen the ramp rates of solar power generation.

solar ramp rates based on an Exponentially Weighted Moving Av-

erage (EWMA). The algorithm simply sets the solar power limit

equal to an EWMA of solar output. EWMA defines a history pa-

rameter α , which dictates the weight the moving average applies

to previous values when updating the moving average, enabling us

to control the level of dampening using this parameter. Note that

the Helios pseudocode in Algorithm 4 is only able to dampen the

rate of increase in solar power output, as sharp decreases are not

incorporated into a moving average based on previous values.

Enabling dampening of solar power decreases would require ad-

ditional logic to track the time and nearby weather conditions, e.g.,

such as with sky imagers, and respond to short-term predictions

of solar output. We could also modify this algorithm to enforce a

limit on the ramp rate, rather than simply dampening it using a

moving average. Dampening the rate of increase in solar output

will be increasingly important as solar penetration grows in provid-

ing time to ramp up/down mechanical generators with potentially

slow ramp rates to balance fluctuations in solar power. Figure 8

shows the results of dampening the solar ramp rates. As expected,

on sunny days that are already smooth, the algorithm does not alter

solar power and thus has a low MAPE. However, on the cloudy day,

the algorithm smooths the increases in solar power and reduces the

sharp spikes in output. As there are large and frequent variations,

Helios is not able to satisfy the limit perfectly, which is reflected in

its higher MAPE of 4.79%, as shown in Table 5.

5.2.5 Load Imitation. Another recently proposed solar control

algorithm focuses on privacy [11] by proposing to imitate the pres-

ence of loads in net meter data, rather than flatten or hide the loads.

The idea is to inject fake load signatures or noise to fool energy an-

alytics algorithms, such as Non-Intrusive Load Monitoring (NILM)

or Occupancy Detecion (NIOM), into returning incorrect results.

Our load imitation algorithm simply applies a limit to solar power

to mirror the demand imposed by a particular load’s power usage

taken from a trace. That is, the algorithm reduces solar output

by the demand specified in the trace, which has the same effect

that the load would have on solar if it were actually present. To

demonstrate this capability, we re-play a highly complex load trace

for a washing machine trace from recent work [2]. Figure 9 shows

the results, which depict the steady solar output and the washing

machine demand on the top graph, and the resulting solar trace
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Figure 9: The top graph shows raw solar power and a washing machine load trace, while the bottom graph shows Helios

modifying the solar power output to mimic the washing machine load.

Case Study Sunny Cloudy Outdoor

Constant Power Generation 1.06 1.13 0.83

Constant Net Metering 5.43 11.90 0.16

Weighted Power Point 4.16 19.12 2.02

Solar Ramp Rate Control 0.67 4.79 2.96

Load Imitation 2.51

Table 5: Fidelity, in terms ofMAPE, for different case studies

when imitating the load in the bottom graph. The graph demon-

strates that Helios is able to mimic arbitrarily complex load power

traces to within a MAPE of 2.5%, as given in Table 5.

6 RELATEDWORK

Helios is a platform that enables rapid and fine-grained control of

solar power output. In effect, Helios transforms a solar module

into a network-connected IoT device. As we discuss, there has

been significant prior research on algorithms for controlling solar

output, many of which we implement in the previous section using

Helios [8, 11–14]. However, since there is currently no platform

that enables programmatic solar control, existing algorithms have

only been evaluated in simulation and never been implemented. In

enabling control of solar power, Helios enables solar to be used as a

demand response resource, similar to other thermostatic loads, such

as air conditioners and heaters, which are currently the focus of

demand response programs. However, unlike these loads, altering

solar power has no impact on either user comfort or food tempera-

ture. As we show, since solar modules have no moving parts, Helios

enables much finer-grained and rapid power control compared to

thermostatic loads with mechanical parts. Recent work on smart

inverters is most closely related to Helios. However, as discussed in

§2, smart inverters focus on specific operating modes that provide

grid power quality support. While these modes implement useful

algorithms, they are not programmable. Instead, Helios is a pro-

grammable DC power optimizer that operates separate from the

inverter, and focuses on enabling control of real power, which has

numerous applications, as we show in the previous section.

7 CONCLUSIONS

This paper presents the design and implementation of a “smart”

software-defined solar module, called Helios, which enables soft-

ware control of solar power output. While recent work has pro-

posed various algorithms to control solar power to optimize grid

operations, there is currently no way to implement them. Helios

addresses the problem by exposing a high-level programmatic in-

terface to a DC-DC power optimizer, which enables higher-level

software to remotely control solar power output in real-time. We

evaluate Helios in the lab (using a solar array simulator) and out-

doors, and show that i) it enables precise and rapid solar control and

ii) its simple API supports multiple solar control algorithms pro-

posed in recent work. Our work effectively transforms solar from

an intermittent power source into one that is highly controllable.
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