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Abstract

Existing residential rooftop photovoltaic (PV) installations in the
United States are inequitable, as they are concentrated in high-
income neighborhoods, and carbon-inefficient because they are
often not located in electric grids dominated by fossil-fuel genera-
tors. Prior work, however, shows that prioritizing socioeconomic
equity can also significantly increase the carbon efficiency of new
installations. In this paper, we formalize the problem of site selec-
tion for rooftop PV installations as a multi-objective optimization
problem, with metrics including energy generation, carbon offsetting,
and demographic equity. We introduce a novel method called Evolu-
tionary Value Assignment (EVA) that uses a neural network trained
via evolutionary learning to select ideal sites for deployment. We
evaluate our proposed approach in a case study using a dataset
of U.S. solar generation and demographic information. Compared
to projections of current installation trends, our method improves
Carbon Efficiency by 43%, Income Equity by 41%, and Racial Equity
by 24%, while increasing Energy Generation Potential by up to 10%.
Therefore, our optimized placement can achieve the estimated car-
bon offset needed for net-zero emissions from electricity generation
earlier than current deployment trends.
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1 Introduction

The threat of climate change is becoming more apparent, marked
by frequent flash floods and extreme heat waves even in areas
previously considered immune to its effects [11, 37]. As a result,
many governments are setting ambitious targets to reduce carbon
emissions from economic activity [8]. To support these targets, par-
ticularly in the electricity generation sector, they are administering
various incentive programs for residential households, such as tax
credits and feed-in tariffs [4, 22]. These incentives, combined with
rapidly declining costs, have made solar photovoltaic (PV) installa-
tions a popular approach for households to lower their energy bills
while reducing their environmental impact.

Ideally, solar PV would be deployed in locations where it pro-
duces the most energy, offsets the most carbon-intensive power
generation, and promotes socioeconomic and demographic equity.
However, existing installations in the United States are not ideally
located according to these metrics, despite solar PV being modular
and easily deployable. While current installations are in areas with
high Energy Generation Potential, they are concentrated in regions
with relatively clean electric grids, as detailed in Section 3. This
clean energy mix is not always from utility-scale solar; Arizona, for
instance, has a high number of solar PV installations, but its grid is
green due to significant nuclear and hydropower capacity [9]. More-
over, prior work has shown that existing solar deployments are
concentrated in high-income neighborhoods, and continuing this
trend would perpetuate socioeconomic and demographic inequities
[33].

The current trends are a complex function of local climate, gov-
ernment incentives, economic factors, electric grid infrastructure,
and political ideology. For example, as we discuss in Section 3.2,
Kansas has few solar installations despite having high Energy Gen-
eration, a short payback period, and a fossil-fuel-heavy grid. How-
ever, not all locations are as straightforward, and these deployment
objectives often conflict. Therefore, altering the current trajectory
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of solar PV installations toward ideal locations is a challenging task
that requires effective policy and incentive design. A prerequisite
for creating such policies is to identify locations that successfully
balance these trade-offs. A simple approach can be to reduce the
problem to a single objective using a linear weighted combination
of the desired attributes. However, as we discuss in this paper, solu-
tions derived from such combinations, while optimal for a specific
set of weights, do not generalize well and are difficult to apply in
practice. Therefore, a new approach is needed to achieve compara-
ble performance while ensuring practical utility.

In this paper, we formulate the site-selection problem for residen-
tial rooftop PV installations as a multi-objective optimization prob-
lem that ranks sites (in our case, ZIP codes) using a super-objective
function across Energy Generation Potential, Carbon Offset Poten-
tial, Racial Equity, and Income Equity metrics. To do so, we employ
an evolutionary learning approach [34] that has been successful
in other domains for efficiently solving similarly large-scale and
complex multi-objective problems. Given a set of attributes for a
site—including average sunlight hours, carbon offset per panel, de-
mographics, and realized potential—our method assigns a score
to each site indicating its desirability for new installations. Poli-
cymakers can then use this score to design incentives and devise
strategies to promote solar PV installations in ideal locations.

Our approach of using evolutionary algorithms offers distinct
benefits over a baseline method such as mixed-integer linear pro-
gramming (MILP). A solution like MILP treats this as a site-selection
problem, providing a set of ZIP codes that are considered optimal.
However, not all ZIP codes in that set are equally desirable for new
installations, and a targeted policy design that recognizes those
differences is more practical. While a MILP-based solution likely
could be extended to assign scores, we hypothesize that an evolu-
tionary solution does so natively, consistently assigns high scores to
sites near the Pareto-optimal front, and generalizes well to unseen
ZIP codes. In evaluating our hypothesis, we make the following
contributions.

(1) We formalize the rooftop solar siting problem as a multi-objective
optimization problem. To do this, we create four distinct, nu-
merical objectives (Energy Generation Potential, Carbon Offset
Potential, Income Equity, and Racial Equity) that capture the
contradictory goals of the solar siting task.

(2) We introduce a new algorithm, EVA (Evolutionary Value As-
signment), for solving the solar siting problem and demonstrate
that it is a significant improvement on both current solar sit-
ing practices and prior work. Our algorithm estimates a single
super-objective using evolutionary learning. To our knowledge,
this is the first work which uses this specific approach.

(3) We demonstrate the efficacy of our approach using a dataset
that spans the continental U.S. [33]. We show that EVA is able to
select sites for solar installations which improve on the currently
estimated projection (i.e., the “Status-Quo”) by up to 43% in
Carbon Offset, 41% in Racial Equity, 24% in Income Equity, and
10% in Energy Generation.

(4) Using our MILP solutions we estimate a pareto-frontier of the
tradeoff between Carbon Offset and Energy Generation. We
show that our EVA method produces a model near this frontier,
demonstrating its near-optimality.
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2 Related Work

In this section, we review prior work on multi-objective optimiza-
tion and the rooftop solar siting task in particular.

Equitability in Solar Installation Placement. The placement
of solar installations can have far-reaching societal impacts. For
instance, Dokshin and Thiede [7], O’Shaughnessy et al. [27], and
Sunter et al. [36] study and quantify how existing adoption of
rooftop PV in the U.S. is inequitable with respect to race and income.
Beyond adoption, Crago et al. [5] study household financial returns
due to solar PV, which often differ based on the business model
adopted by the installation company—they find similar disparities
along lines of race and income. These studies identify high upfront
costs as one key reason for these disparities, which are further
skewed by subsidies for rooftop solar that disproportionately benefit
high-income homeowners [19]. Taken together, these distributional
studies highlight that the existing Status-Quo of residential PV
dissemination in the United States may exacerbate inequities along
income or racial lines.

In the closest work to ours, Sigrist et al. [33] highlighted the
inequitability and carbon-inefficiency of existing and future res-
idential PV adoption in the U.S. They proposed simple “greedy
algorithms” to remedy the problem (e.g., placement policies that
prioritize areas for solar development based on race or income) and
highlight the potential of optimized placement strategies. In our
work, we build on these findings to apply a principled and holistic
multi-objective lens to the problem - rather than myopically fo-
cusing on maximizing e.g., income equity, we focus on developing
effective and practical optimization techniques for the solar siting
problem that hope to simultaneously optimize multiple metrics
such as equity, Carbon Offset, and Energy Generation. In doing so,
we demonstrate how “a rising tide can lift all boats,” identifying op-
portunities where e.g., optimizing for one metric can have positive
effects on other metrics.

Multi-objective Optimization. Optimizing multiple objectives
is a classic problem that arises in several application domains, and
there have been several approaches proposed over the years —
Sharma and Kumar [32] present a comprehensive overview. In
a classic optimization sense, multi-objective problems can be solved
using a mixed-integer linear program (MILP), simulated anneal-
ing [2], and particle swarm optimization [28].

However, due to the difficulty in optimizing multiple objectives
simultaneously with gradient descent (as it is hard to specify a
loss function that takes into account a good trade-off between the
objectives), multi-objective optimization is often performed using
evolutionary computation, such as the Non-Dominated Sorting
Genetic Algorithm (NSGA) [6]. The high-level idea of these ap-
proaches is to explore the possible search space of solutions (i.e.,
neural network architectures and weights) in directions that are
biased towards Pareto-optimality (defined formally in Section 3.3),
which yields solutions that are “as good as possible” on all objectives
simultaneously.

Another track of research considers solving multi-objective op-
timization problems by learning (or selecting) a weight for each
objective, effectively reducing it to a single-objective optimization
problem. Conventional Weighted Aggregation (CWA) [12] simply
uses a selected weight for each objective at the beginning of a search
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run. While simple, this method can only explore a single point on
the Pareto front during each run. To address this, Evolutionary
Dynamic Weighted Aggregation (EDWA) [17] proposes learning
weights for each objective to explore different areas of the Pareto
front adaptively during search time. We build on these works by
learning a mapping from features (i.e., attributes, see Section 4.3) to
a single score that effectively acts as a single, combined objective.

Several studies apply multi-objective optimization to problems
that concern the deployment of PV, including HVAC system op-
eration [40], photovoltaic system design [18, 30, 35], supply chain
networks [26], generation forecasting [39], and PV module cool-
ing [31], among others. However, to the best of our knowledge, all
of these works use multi-objective optimization to balance between
technical objectives (e.g., energy production, lifespan), rather than
the socioeconomic and geographic factors that are considered in
the solar siting problem that we study.

3 Background and Preliminaries

In this section, we provide background and preliminaries on the
energy grid, residential and rooftop photovoltaics, multi-objective
optimization, and other relevant topics that inform the development
of our approach.

Energy Generation Potential Carbon Offset Potential

Figure 1: Energy generation Potential per installation does
not correlate well with the Carbon Offset Potential per in-
stallation for the continental U.S.. A darker color (green)
represents a high value for either of the potentials and vice
versa.

3.1 Residential and Rooftop Solar PV

Amongst carbon-free Energy Generation sources, solar photovoltaics
(PV) are perhaps the most mature and widespread technology. Pho-
tovoltaic deployments on building rooftops have seen significant

growth over the last decade — from 2021 to 2022, the global in-
stalled capacity of these deployments jumped by 49% [10]. These

include residential installations that deploy panels on the roof of,

e.g., single- or multi-family buildings. Beyond the benefits of reduc-
tion in carbon emissions, these deployments reduce demand on the

broader electric grid and offer opportunities for building owners

to benefit financially, by selling electricity for instance. Currently,

most rooftop PV in the U.S. has been deployed on an individual (i.e.,

unplanned) basis. However, there is mounting interest in models

such as community solar [29] and targeted incentives [27] that

orchestrate rooftop PV deployment in a more planned manner.

3.2 Electric Grid Diversity

For decarbonization goals, an ideal solar PV installation is located
in a region with high Energy Generation Potential (i.e., abundant
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sunlight) as well as high Carbon Offset Potential (i.e., a grid sup-
plied by carbon-intensive generation sources). However, due to the
presence of utility-scale renewables and low-carbon generation in
grids throughout the U.S., Energy Generation Potential and Carbon
Offset Potential are not highly correlated — see Figure 1. States with
the highest Energy Generation Potential (dark green color on the
left map, primarily the West Coast of the U.S.) have a very low
Carbon Offset Potential (light color on the right map). This implies
that new PV installations in these states are less impactful. On the
other hand, the states in Midwest U.S. (e.g., Missouri, Indiana, etc.)
have the highest Carbon Offset Potential, as their existing grid gen-
eration mix primarily consists of fossil-fuel-based energy sources
with high carbon emissions. However, their climates are not as read-
ily suited for PV compared to some other states. This diversity in
electric grids and the resulting disparity creates a tension between
Energy Generation Potential and Carbon Offset Potential, which a
site selection algorithm must navigate tactfully.

Moreover, even when these objectives align, as is the case in
Kansas with the 11th highest Carbon Offset per installation and
14th highest Energy Generation per installation, that is no guaran-
tee of adoption. Kansas, for example, has the 7th lowest proportion
of its energy generation from Solar — 18th lowest when normal-
ized to possible installations in the state. As explored in previous
works [33], this may be due to relative costs of installation (i.e.,
average payback period in Kansas is 10 years) or political affiliation
(Kansas voted the 21st most conservative in the 2024 presidential
election[24]).

3.3 Multi-Objective Optimization

Multi-objective optimization generalizes classic optimization prob-
lems by optimizing (i.e., maximizing, minimizing) n > 1 objectives
simultaneously. Formally, for some decision variable(s) § and ob-
jective functions, {fi, f2,-- -, fu}, where each objective function
fi(6) : 0 — R quantifies the quality of 6 along some dimension of
interest, a multi-objective optimization attempts to find “the best”
solution (or series of solutions) under all n objectives. As some
objectives in the set {fi, f2,- - - , fu} may contradict each other, it
may be impossible to find a solution that is simultaneously optimal
for each objective considered individually. Thus, a solution to a
multi-objective problem is considered optimal if it is Pareto-optimal
(i.e., no other solution performs better on every single objective
than the current solution — see below).

Pareto-optimality. A multi-objective problem often does not
admit a unique optimal solution but rather a set of solutions that
optimally trade-off between objectives, known as the Pareto front. A
classic goal of multi-objective optimization is to find solutions that
lie on the Pareto front, deemed Pareto-optimal solutions. Formally,
a solution is Pareto-optimal over a set of solutions and objectives if
there is no other solution that dominates it. A solution dominates
another if it is at least as good on all objectives, and strictly better
on at least one objective. Letting 6 € S denote a solution 6 in the
feasible solution set S, 0 is Pareto-optimal over a set of objectives,
¥, if and only if:

A eS: (VfieF:f(8) = fi(0) A3fj e F:fi(0) > f;(0)).
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Linearly Aggregating Multiple Objectives. Assuming that all
objectives are directionally aligned (i.e., all maximization or all
minimization), a standard method to reduce n objectives into a
single function is conventional weighted aggregation (CWA). This
method balances different objectives by giving each a weight and
summing them up to a single scalar, i.e.,

F(0) = ) wifi(6),
i=1

where w; is a user-provided weight that is fixed throughout the
optimization. CWA assumes some prior knowledge of the objec-
tives (such as the order of significance or the target optimal value).
When prior knowledge about the objectives is unknown, a variant,
dynamic weighted aggregation (DWA), may be used. This class of
methods is characterized by automated learning of the weights,
w1, ..., wy through, e.g., a grid search of possible weights.

We note that a linear combination of objectives is often not suf-
ficiently expressive for certain problems. For example, consider
two students who are evaluated based on their final grade in two
courses (i.e., two objectives). Under any linear weighted combina-
tion of these objectives (final grades), a final grade of 100 in the
higher-weighted course and 40 in the lower-weighted course would
be considered as good as or better than a score of 70 in each course.
However, in most cases, a final grade of 40 is a failing grade, which
might be considered substantially worse for e.g., the student’s pro-
gression. In Section 5, we describe our main approach, EVA, which
is able to learn these non-linear relationships for different objectives.

3.4 Evolutionary Learning

As discussed in the example above, common approaches such as
CWA or DWA are easy to define and combine many objectives
into a single objective, but have been shown to be limited in the
portion of the Pareto front they can represent [13, 25]. Motivated
by the non-linear structure of some multi-objective optimization
problems, it is thus natural to consider something more expressive,
such as learning a neural network. However, classical supervised
learning is generally insufficient for learning Pareto-optimal so-
lutions without strong prior knowledge on the structure of the
problem [20]. To address this, we follow literature on evolutionary
learning and genetic programming, which have seen success in
multi-objective settings [14-16]. At a high-level, the approach we
propose learns a nonlinear scoring function (or ranking function) in
the form of a neural network — in our context, this function assigns
scores to each potential solar site (higher scores indicating more
favorable locations). The nonlinearity of the neural network allows
these scores to be more expressive than a linear combination of the
objectives — for instance, the scoring function is able to learn rep-
resentations that better capture the structure of the student grade
problem described in Section 3.3.

We introduce some terminology and briefly detail the evolution-
ary process that is used for learning here - see Section 5 for a formal
description of our approach. For the purpose of evolution, each of
the multiple objectives are represented by a fitness function (e.g.,
absolute or normalized value for this objective). The learning goal
is to find a neural network which achieves high overall fitness (i.e.,
across all objectives, particularly Pareto-optimal) - to do so, we
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begin with a population (i.e., collection) of networks (a specific case
of the more general genome used in evolution literature), which are
a combination of a neural network architecture and a set of param-
eters (i.e., weights). To this population a selection step is applied
to identify and select high-performing networks — these selected
neural networks are then mutated by randomly adding, removing,
or modifying nodes/connections in each network to generate a
new population, referred to as the next generation. This process
repeats for either a fixed number of generations or until a single
network reaches a desired fitness score. See Section 5 for details
on the mapping of each of these concepts to our approach for the
solar siting problem.

4 Problem Formulation

In this section, we formalize the rooftop solar siting problem as a
multi-objective optimization problem and define each of the objec-
tives we use as metrics in subsequent sections.

4.1 The Multi-objective Rooftop Solar Siting
Problem

Let n > 1 denote the number of installations to be built, and L > 1
denote a list of locations (e.g., ZIP codes) by z1, ...z;, where each z;
has a maximum capacity (i.e., available rooftop space) of ¢; and k ad-

ditional attributes (e.g., median income or average yearly sunlight)
(1)
1

solar siting problem is an assignment, A: RI%k  RL that maps

each location (including its attributes) to a number of installations
to be built. That is, A(z;) is the number of installations that assign-
ment A allocates to ZIP code z;. A “best” solution to this problem
should be Pareto-optimal over the space of considered siting strate-
gies S and j > 1 objectives given by ¥ = fi(A), ..., fj(A), while
not violating the capacity constraint, ¢, of any location. Formally,
a solution, A*, is Pareto-optimal if and only if:

BA:N[eF: (A) = [(AY)
A*(z;) < ¢ :Vle[L].

denoted by z,"/, ..., z(k). A solution to the multi-objective rooftop

4.2 Objectives

As outlined in the introduction and related work, there are several
natural considerations in the build-out of an energy system such
as rooftop PV installations. Energy generation, carbon impact, and
even socio-economic equity are all affected by the type and location
of new installations. With this consideration, we formally define
four maximization objectives that we will consider in our case study
(see Section 6):

Energy Generation Potential. This objective estimates the total
new energy generated after the addition of installations designated
by a given assignment. In our case study, we use Energy Generation
estimates for a given ZIP code provided by the Project Sunroof
dataset [21], described in Section 6.1. This objective is denoted as
Jee.

Carbon Offset Potential. This objective estimates the total
amount of avoided carbon dioxide emissions (in kg) due to the
new locations of rooftop PV adhering to a given placement. In our
case study, this estimation is calculated using the methodology of
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the SunSight dataset [33] (see Section 6.1) — this takes estimates
of non-baseload carbon emissions (and equivalent greenhouse gas
emissions) per kWh from EPA eGRID data [38] and multiplies them
by the yearly average Energy Generation Potential taken from
Project Sunroof. This objective is denoted as fco.

Income Equity. This objective measures the distribution of in-
stallations across income lines. In our case study, we define In-
come Equity as one minus the difference between the proportion
of installations installed in high income neighborhoods versus the
proportion of installations in low income neighborhoods. Formally,
we define Income Equity, fiE, as:

|#installationspgh income — #installationsiow income!
=1- .

fie #installations;gya

Racial Equity. This objective measures distribution of installations
across lines of self-reported race. In our case study, we define it as
one minus the difference between the proportion of installations
in below-median Black population neighborhoods versus those in
above-median Black population neighborhoods. Racial Equity, frg,
is defined as:

|#installationsoy Black — #installationspigh Black|

=1-
fee #installations;ga]

We choose the Black Population Proportion as a representative case
because it has been shown to be the most skewed demographic for
rooftop PV [5, 33, 36].

Composite Performance Ratio (CPR). While co-optimizing the
four objectives above, we also define an aggregate objective used
in training our model and for statistical analysis. This aggregate
objective is defined as the sum of each objective’s improvement
over the “Status-Quo” projection strategy described in Section 6.2,
with each term expressed as a ratio of the achieved value to the
Status-Quo value. We note that the CPR metric does not capture
some real-world considerations. In particular, our ratio-to-Status-
Quo approach effectively penalizes objectives that the Status-Quo
projection already does well on, and those that change less as the
assignment changes. However, we find that defining this aggregate
metric is highly effective in training a model that outperforms a
target baseline such as the Status-Quo (see Section 5.2 for details).

4.3 Normalized Attributes

Attributes are measurable properties of each location that are known
apriori and can be used to inform an installation assignment. In our
formulation, we define each attribute as a normalized quantity that

falls in the range of [0, 1]. Formally, for each ZIP code, z;, each one
(k)

;  is normalized to z; (%) as follows:

*) _ (k)
G0 o S T el (")
' (k)

maxle[L] (Zl ) - minlE[L] (Zl(k)) .

of its attributes, z

In our case study, these attributes (for each ZIP code) are taken
primarily from the Project Sunroof dataset and American Commu-
nity Survey dataset aggregated over a 5 year period from 2016 to
2020 (abbreviated to ACS5), which are included in the SunSight
dataset (see Section 6.1). The five attributes we consider are: Energy
Generation Potential per Panel, Carbon Offset Potential per Panel,
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Black population proportion, median income, and realized potential
(as a percentage).

5 Methodology

In this section, we outline the detailed methodology of our EVA
approach. We first define the EVA method in Section 5.1 before
describing the technical details and challenges of fine-tuning our
approach in Section 5.2.

5.1 Evolved Value Assignment

Our main method, Evolved Value Assignment (EVA), uses an evo-
lutionary framework (introduced in Section 3.4) to learn a scoring
function represented by a neural network denoted by Vg : R’ SR,
which maps a location’s normalized attributes, 251), 2;2), cee ng)
(as described in Section 4.3), to a score that represents the quality
of location z;. Using Vg, we construct a installation assignment, Ag,
that places solar installations so as to maximize the total quality of
the selected sites. Formally:

Ay = arg max Z Vg(Zgl),igz),”' ,555)) * Alzp) |-
1€[L]

This inferencing process to create an installation assignment is
illustrated in Figure 2.

Evolutionary Framework. Our method, Evolutionary Value As-
signment (EVA), is a variant of the Neuroevolution of Augmenting
Topologies (NEAT) algorithm, which uses principles of evolution to
optimize both the weights and the structure (topology) of a neural
network [34].

(1) A population of neural networks are randomly initialized.
For our setting, these are constrained to networks with five
inputs (i.e., each of the attributes) and one output (i.e., the
output score).

(2) Each of these networks is evaluated on the four objectives
described in Section 4.2.

(3) A subset of these networks are selected via their evaluation
on the four objectives and our selection method (see below).
These selected networks then continue to the next step.

(4) The selected networks are used to create a new population
via our reproduction method (see below). This new population
is then considered the basis of a new generation, and the
process repeats from step (2) onwards.

(5) After a chosen number of generations, g, we choose the final
model to be the network with the highest CPR score. CPR
score is further discussed in Section 7.3.

Now, we further elaborate on these steps.

Evaluation. Using each network’s associated installation assign-
ment, Ay, each network is given a fitness vector, 7"9 e R%, with
one entry for each of the four objectives described in Section 4.2.
Formally:

Ty = [foo(Ag), fe(Ag), fie(Ag), fre(Ag)] .

To calculate F, we use the SunSight dataset’s simulator (Section 6.1),
simulating a placement of two million panels — this number rep-
resents a tripling of the total rooftop solar PV compared to what
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exists in the SunSight dataset, and is based on industry projections
for the number of installations in 2034 [33].

Selection. Our selection method is a variant of lexicase selection [16]
modified to suit our use case. This modified version is based on the
following steps. Selection starts by uniformly randomly choosing
one objective, f, out of the set of four fco, fec, fie, fre that has not
yet been used during this iteration of the selection step. Next, we
filter out a fraction of networks that have the lowest fitness on this
specific objective - this fraction is the objective selectivity that can
be manually or programmatically tuned for each objective function.
These two steps (choosing an objective and filtering the population
on it) repeat until all of the objectives have been chosen once. After
selecting through each of the four objectives, the remaining popula-
tion continues to the reproduction step. The size of this remaining
population is controlled by a survival threshold hyperparameter.

Reproduction. Amongst the selected networks, each unique pair
undergoes a process known as crossover to produce a new network,
and each resulting network is then mutated.

Given a unique pair of networks, a gene represents either a
node or connection in either network, where homologous genes are
present in both networks and disjoint genes are found in only one.
Crossover combines homologous genes by randomly selecting a
copy from either network, while disjoint genes are taken from the
fitter network (i.e. the network with a higher CPR score).

After this new network is created, it mutates. Let i — j represent
the connection from node i to j. Each possible mutation occurs
probabilistically and independently:

e Add a node (P = 0.2): A random connection i — j is deleted,
a new node n is created, and two new connections (i — n
with weight 1 and n — j with the weight of the original
connection i — j) are created. (Occurs at most once)

e Delete a node (P = 0.2): Select a random node j. For all of j’s
incoming neighbors i, remove connection i — j. For all of
J’s outgoing neighbors k, remove connection j — k. (Occurs
at most once)

e Addaconnection (P = 0.5): Select random nodes i, j such that
iis in an earlier layer than j. Create connection i — j with a
random weight drawn from a mean-zero normal distribution
with o = 1. (Occurs at most once)

e Delete a connection (P = 0.5): Select random, valid connec-
tion i — j and remove it. (Occurs at most once)

e Change a weight or bias (P = 0.8): The weight or bias is
updated by adding a sample from a mean-zero normal distri-
bution with o = 0.5. (Occurs at most once for each connection
or node)

To implement crossover and mutation, we used the neat-python
library [23]. We tuned the hyperparameters mentioned in the next
section (Section 5.2), leaving other hyperparameters set to default
values (for instance, the parameters of the mutation step). Our
implementation also uses elitism, which means that the network
with the highest CPR score (see Section 4.2) that is also selected is
added to the new population without reproduction or mutations.
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5.2 Hyperparameter Tuning on EVA

In our implementation of EVA, we tune the following hyperpa-
rameters: survival threshold, population size, number of generations,
training installation count, and the objective selectivity for each
objective. Below, we describe each hyperparameter.

Population Size. Population size is the number of neural networks
that compete during each generation. A larger population tends to
produce better final results, but exponentially increases the training
time. For this reason, we used a population size of 30 networks for
the subsequent results, unless specified otherwise.

Survival Threshold. Survival threshold is the proportion of the
population that remains after the selection step. A low survival
threshold has strong selective pressure, potentially converging to
a high-quality solution faster at the expense of “genetic diversity”
(i.e., less of the possible neural network search space is able to
be explored). Conversely, a higher threshold has lower selective
pressure but greater genetic diversity. We tune this hyperparameter
over the range [0.05,0.5], choosing a final threshold of 0.3 for the
results presented here. We chose this threshold as it led to the model
having the highest CPR while strictly dominating Status-Quo.

Number of Generations. The number of generations is the number
of iterations of the selection, reproduction, and mutation steps
taken (i.e., during training) before a final model is chosen - this is
analogous to the number of epochs in a supervised learning setting.
We trained models for six generations, with each generation offering
some improvement over the last. However, later generations offered
smaller increases than earlier generations. While there is a potential
for marginal performance improvements, which is highly desirable,
computational limitations constrained us from testing with even
more generations for the purpose of this work.

Training Installation Count. Training installation count is the
number of installation assignments simulated during the evaluation
step. Our presented model used a training installation count of 2-10°
installations, because 2 - 10° is approximately the number of solar
installations that must be added to the dataset’s ZIP codes to reach
net-zero emissions [33]. Beyond the presented model in the paper,
we also tested training with a smaller installation count of 5 - 10° to
reduce the computational cost, but the model performance degraded
significantly compared to training on 2 - 10° installations.

Objective Selectivity. Objective selectivity controls the fraction of
networks filtered out by lexicase for each objective. Given selectivity
parameters, v;, for each objective, f;, and a survival threshold of h,
the fraction of individuals selected s; is given by:

si=hPi, for p; = (%)
j=1%
Put simply, a higher selectivity parameter for an objective means
that it is under higher selective pressure (i.e., networks that perform
poorly on that objective are more likely to be eliminated earlier
during lexicase selection).

One of the primary goals of EVA is to outperform existing base-
line strategies (e.g., see Section 6.2) in all objectives. One way to
achieve this is by changing the selectivity hyperparameters for each
objective so that the model properly balances each objective. To
tune these parameters, our method iteratively evaluates a scoring
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Figure 2: Visualizing the Evolutionary Value Assignment (EVA) method, both training (a) and inference (b). In the training stage,
the EVA method performs evolutionary learning iterations for each of g generations (see Section 5.1 for details). The goal of the
training stage is to obtain a scoring function (represented by a neural network) that can be used to score potential locations for
PV siting (i.e., ZIP codes). In (b), we illustrate how these scores are used to create assignments of installations to locations.

function trained from scratch on the current selectivity parameter
configuration, then increases the relative selectivity of any objec-
tive that falls short of the target baseline. In the next iteration,
the increased selectivity increases the likelihood the new model
will outperform the baseline in that objective. We detail the tuning
method as follows:

(1) Let v ¢ represent the selectivity of objective f for iteration
Jj. Also, define all objective selectivity parameters for an
iteration as 7 = [v} r] re

(2) Let Cy be the objective value obtained by the Status-Quo
projection (see Section 6.2) for each objective f € F.

(3) Initialize v ¢ < 1 for each objective f € F.

(4) Perform the following iteration t times, or until the model
outperforms the Status-Quo on all objectives.
(a) For iteration j, create a new neural network scoring func-
tion using EVA with the objective selectivity parameters
3;. Evaluate on two million panels and let E;, f be the
model’s projection for each objective f € F.

(b) For each f € F, calculate the ratio between the perfor-
mance of the currently selected model and the target base-
line R; r = E; ¢/Cr. f Rj ¢ < 1, update the selectivity for
the next iteration: v;,1 ¢ < vj ¢/R; 7.

Our results (in Section 7) use the “best” hyperparameters that
we found using these procedures. In the next section, we detail the
setup and baseline strategies for our case study.

6 Experimental Setup

This section presents our experimental setup, including the dataset
we use and the baseline strategies we implement for comparison.

6.1 Dataset

We use data, visualization, and simulation tools from the SunSight
dataset [33] for rooftop solar installation analysis. This dataset
includes a toolkit that consists of a simulation testbed and visualiza-
tion library, and the underlying data used is a curated combination

of Google’s Project Sunroof [21] and 5-year American Community
Survey (i.e., U.S. Census, or ACS5) [3] data at a ZIP code granularity.

In our experiments, we simulate placing up to two million in-
stallations in the locations (i.e., ZIP codes) that are included in the
solar data of the Project Sunroof dataset. The attributes defined in
Section 4.3 are provided at a ZIP code granularity via the SunSight
dataset’s combination of the ACS5 and Project Sunroof datasets.
The objective functions defined in Section 4.2 are calculated us-
ing the same ZIP code granularity data that combines the Project
Sunroof and ACS5 datasets, giving estimates of quantities such as
Carbon Offset, yearly solar Energy Generation, and demographics.

6.2 Baseline Strategies

Our baseline strategies include a Status-Quo strategy that projects
current installation trends into the future, a round robin strategy
presented in prior work [33], and an optimal Mixed Integer Linear
Programming (MILP) solution to act as an upper bound. Particularly,
these MILP solutions represent the best possible solutions of all
possible CWA and DWA approaches.

Status-Quo Projection. The Status-Quo projection baseline esti-
mates the current trajectory of U.S. rooftop PV installations in terms
of the objectives defined in Section 4.2 for a number of additional
installations (beyond existing installations as of 2025) up to two
million installations. This simulates the case where the distribu-
tion of installations across the U.S. remains the same as additional
installations are built, and evaluates each objective after new instal-
lations are factored into the mix. To simulate this, we first calculate
the proportion of new small-scale solar installed in each state from
March 2024 to March 2025 using the EIA small-scale PV dataset[1].
We also calculate the intra-state proportion of existing installations
using the Project Sunroof dataset. For any given number of new
installations (i.e., to be added), we then allocate these installations
to ZIP codes such that both proportions are maintained to give a
reasonable estimate of the current trajectory.

We note that this does not account for any shifts in the distri-
bution of new solar installations or significant future shifts in the
(utility-scale) carbon intensity of different grid regions, but this
does serve as an estimate of the current trajectory of rooftop solar.
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Round Robin. The simple Round Robin strategy described in [33],
is used as a baseline comparison. This algorithm alternates assign-
ments between greedily placing in the ZIP codes with the highest
Carbon Offset, highest Energy Generation, lowest median income,
and highest Black population proportion sequentially.

Mixed Integer Linear Programming (MILP). Given a particular
weighted linear combinations of our four objectives, we can for-
mulate the solar siting problem as an MILP and obtain an instance-
optimal solution. This allows us to approximate the Pareto-frontier
of our multi-objective optimization.

In general, an MILP-based solution is not feasible at scale due
to its information requirements — in particular, a MILP solver is
able to observe realizations of the four objective values for any fine-
grained assignment of installations to locations. This is in contrast
to our EVA model, which only relies on five location attributes
(see Section 4.3) that are reasonably known apriori. Furthermore,
an MILP solution can specify a precise number of installations
for each site, while our EVA model is constrained to produce a
ranking (scoring) of locations, which is more valuable in practice
(e.g., for incentivization policies). However, an MILP solution serves
as a useful benchmark since this “full information” setting can be
considered a target that our solution should approach.

MILP supports both discrete (panel counts) and continuous (aux-
iliary) decision variables while optimizing the linear aggregate
objective subject to linear constraints. Since the equity objectives
are defined as absolute deviations in panel allocation across de-
mographic lines and are thus non-linear, we introduce auxiliary
variables agg and ajp constrained to equal the absolute deviation
at optimality. These auxiliary variables are then penalized in the
final objective function. Formally, the objective function is:

L(EG) -(CO)
( Zi Zi ) arg GRE
w1 W

fA)=| > A@)

le[L]

+ w2
n

We conduct an extensive grid search over the space of possible per-
objective weights (w1, w2, w3, ws) and map out an approximate
Pareto front using our results (see Section 3.3).

7 Experimental Results

This section presents the outcomes of our proposed approaches
against the baseline strategies described in the previous section. We
use the four objectives from Section 4.2 as the metrics for evaluation.
The optimal MILP solutions are also analyzed to understand the
nature of the tradeoff in our siting problem.

7.1 Status-Quo Comparison

In this section, we provide a detailed examination of EVA’s perfor-
mance, particularly as it relates to the Status-Quo projection. In
Figure 3, we plot results for EVA at several numbers of “additional
installations” — this reveals how the objectives of interest change
relative to a Status-Quo at different scales or points in the future.
A notable observation is that EVA achieves a significantly higher
Carbon Offset score (42% higher than Status-Quo) compared to its
Energy Generation score (10% higher than Status-Quo). Carbon
Offset first dramatically increases (for small numbers of additional
installations) because EVA is able to fill out “low-hanging outliers”
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Figure 3: The performance of our EVA model on each ob-
jective as a ratio to Status-Quo. The dashed line aty = 1
represents the performance of the Status-Quo projection. Re-
sults are recorded every 100, 000 installations.

in e.g., the most carbon intensive grid regions — as these grid re-
gions become saturated with installations, the Carbon Offset ratio
to Status-Quo slightly decreases as the prospective panel siting
locations become less-and-less carbon intense. We note that using
the Status-Quo as a baseline exaggerates this difference between
Energy Potential and Carbon Offset because the Status-Quo projec-
tion performs poorly in Carbon Offset and current installations are
known to be skewed toward high Energy Generation [33]. How-
ever, it is notable that EVA still outperforms the Status-Quo on both
metrics. Furthermore, its outperformance on Racial Equity (24%
higher than the Status-Quo) and Income Equity (41% higher than
the Status-Quo) also draws attention to the potential for significant
improvement over our current trajectory.

The map in Figure 4 visualizes the scores given by EVA to each
ZIP code in the dataset on a map, which reveals a preference for
ZIP codes surrounding the coal belt of the U.S. (i.e., Appalachian
states and Midwestern states such as West Virginia and Indiana),
and some interesting disparities across states. These scores roughly
correlate with the Carbon Offset Potential by state (e.g., see Fig-
ure 1) and are likely explained by differences in state-level solar
adoption and incentives (e.g., state and utility subsidies) [33]. An-
other notable region with high scores from EVA is the Southwestern
states, particularly Arizona and New Mexico. The scores in these
states correlate to their high Energy Generation Potential (see Fig-
ure 1). Alternatively, Massachusetts and Washington, states with
high number of installations and low Energy Generation Potential,
are assigned the lowest scores by our model.

Key Takeaway. EVA outperforms Status-Quo in Carbon Offset, En-
ergy Potential, Racial Equity, and Income Equity (i.e., all objectives)
for all installation counts evaluated. Notably, since net-zero carbon
targets require fewer than this number of installations [33], we show
that an EVA-based assignment would reach net-zero carbon with
fewer installations (up to 41% fewer, taking years off of net-zero tra-
Jjectories) while also achieving higher Energy Generation, additionally
improving distributional measures relative to the Status-Quo.

7.2 Pareto-optimality

In this section, we examine the Pareto front of the solar siting
problem by aggregating the results of all MILP solutions generated
by the grid search process described in Section 6.2. In doing so, we
characterize the relationship between this estimated Pareto front,
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Average Relative Weight of...

Objective Ratio-to-Status-Quo | Average % Contribution

Objective Dominating Solutions Pareto-optimal Solutions | Correlation w/ CPR (Pearson r) to CPR
Carbon Offset 0.493 0.492 0.888 19.8%
Energy Generation 0.103 0.155 0.656 25.6%
Racial Equity 0.210 0.200 0.511 25.6%
Income Equity 0.195 0.154 0.809 28.9%

Table 1: Statistics of all MILP-based solutions across objectives. Dominating solutions exhibit ratio-to-Status-Quo values > 1
for all objectives, and the Pareto-optimal solutions (amongst MILP solution set) are defined formally in Section 3.3. We also
report the correlation between the ratio-to-Status-Quo of an objective and its contribution to the CPR score Finally, we report
the average weight (i.e., w;) given to each objective by a specific class of solutions. Across both solution classes, we report the
average contribution (as a percentage) to the CPR score (defined in Section 4.2) — a higher value means that a higher percentage
of the CPR score (on average) comes from good performance on this particular objective.
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Figure 4: Map of the scores for ZIP codes generated by our
model. Higher scoring ZIP codes are picked first for siting.
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Figure 5: The Carbon Offset and Energy Generation tradeoff
for all strategies. Each point represents a potential solution,
colored by its CPR (defined in Section 4.2). The Pareto front
of all MILP solutions is drawn in purple, estimated using a
quadratic line of best fit. The green “X” marks the solution
found by the EVA method. The dashed vertical and horizontal
gray lines represent the Status-Quo reference point (1.0, 1.0).

our EVA-based model, and other baselines. In Figure 5, we plot this
estimated Pareto front of the MILP model over the Carbon Offset

and Energy Generation objectives (i.e., fco and fgg, respectively).

We observe that the previously studied Round Robin strategy lies
“behind the front”, implying that it is sub-optimal for siting, in terms
of Carbon Offset and Energy Generation, while EVA is near the
front, meaning that it is close to Pareto-optimal.

Key Takeaway. The EVA-based solution lies close to the MILP-generated
Pareto frontier for Carbon Offset and Energy Generation. Only one
MILP solution (out of 1,942) dominates the EVA-generated solution
across all objectives. This demonstrates the near-optimality of our
EVA model — EVA works with more limited information (and is thus
more able to generalize), but still performs as well as these clairvoyant
MILP baselines.

7.3 Comparison of Objectives

In order to better understand how each objective contributes to
overall performance, we analyze our set of MILP solutions by com-
puting pairwise Pearson correlation coefficients (r) that quantify
the strength of alignment between the relative performance of
each objective (Carbon Offset, Energy Generation, Racial Equity,
and Income Equity) and the Composite Performance Ratio (CPR,
see Section 4.2). Large correlation coefficient r-values between an
objective and CPR suggest that objective may be important and
correlated with the other objectives. In Table 1, we observe that
Carbon Offset’s ratio-to-Status-Quo term most highly correlates
with CPR (r = 0.888), followed by Income Equity (r = 0.809).
Recall the definition of the CPR score (see Section 4.2) — each
objective is represented by a ratio to the Status-Quo projection. To
observe any differences in scale (i.e., if a single objective’s ratio-to-
Status-Quo term is much larger than other objectives on average),
we also report the average contribution of each objective (as a per-
centage) towards CPR. Interestingly, while Carbon Offset and In-
come Equity are both highly correlated with CPR, they significantly
differ in their average contribution to CPR - namely, Carbon Off-
set contributes 19.8% to the CPR on average, while Income Equity
contributes 28.9% on average. This suggests an interesting dynamic
borne from the definition of CPR - for example, if a certain solution
doubles the Carbon Offset and simultaneously increases Income Eq-
uity from 0.2 to 0.6, the corresponding ratios to the Status-Quo are
2 and 3 for Carbon Offset and Income Equity, respectively, meaning
that Income Equity contributes 50% more to the CPR score in this
case. In this sense, the design of the CPR score itself influences
our results. Since Carbon Offset still exhibits the best correlation
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Figure 6: This heatmap displays the Pearson’s r correlations
between the relative weights assigned to each objective (rows)
and the performance achieved on each objective as well as
the CPR (columns). Each cell in the grid is colored by its
correlation, ranging from red for positive correlation to blue
for negative correlation.

with CPR despite these scoring dynamics, the rightmost columns
of Table 1 suggest that Carbon Offset is particularly important for
increases in CPR.

We investigate this further in Figure 6, which visualizes the Pear-
son r correlation coefficients between the relative weights of each
objective (on average) and performance in each objective. Note that
in the MILP formulation, the relative weight assigned to an objec-
tive is exactly interpreted as the importance that the solver places
on this objective. The final column in Figure 6 also visualizes these
same correlations between relative weights and the overall CPR
score. As expected, the relative weights for any given objective cor-
relate positively with its own performance ratio (e.g., the diagonal
of red (positive) cells). Out of all objectives, the weighting of Carbon
Offset exhibits the strongest correlation with its own performance
(r = 0.848). However, perhaps most surprisingly, this figure also
shows that the Carbon Offset weighting correlates positively with
every other performance metric, and we find that this synergy is
unique to Carbon Offset. This means that, perhaps paradoxically,
placing more importance on the Carbon Offset objective actually
improves performance on all objectives (up to a certain point). For
other objectives, their relative weightings correlate negatively with
performance on other objectives. This suggests that Carbon Offset
is the most “efficient” single objective to focus on - i.e., not only
does it strongly correlate with its own performance ratio, it also
positively correlates with the other objectives of interest in our
setting. We note that this statistical analysis is limited by two fac-
tors: i) we only consider MILP solutions that linearly aggregate the
multiple objectives and ii) we only consider the Pearson correlation
statistic, which is itself linear. Thus, these results may not fully
capture complex interactions or nonlinear dependencies between
objectives and overall performance.

Key Takeaway. Through statistical analysis of our MILP solution
set that explores the search space of the problem, we investigate how
our four objectives interact with one another on our dataset of the
continental U.S. Interestingly, we find that Carbon Offset stands out as
the singular objective that both exhibits the strongest correlations with
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overall performance (i.e., CPR score), as well as correlating strongly
and positively with all other objectives, such as Energy Generation.

8 Conclusion

In this work, we define and implement a training algorithm called
EVA, which applies NEAT-based evolutionary neural networks
with a variant of lexicase selection for a multi-objective solar sit-
ing problem. Our work demonstrates that a model produced using
this method substantially outperforms both existing Status-Quo
projections and simpler algorithms considered by prior work. Our
model improves on these baselines across multiple key objectives,
including Carbon Offset, Racial Equity, Income Equity, and Energy
Generation. Our proposed EVA approach leverages the expressive-
ness of neural networks to learn a function, distilling multiple
objective values into a single score.

Simulating the solar siting problem using available data sets of
solar generation and demographic data for the continental U.S.,
we find that our NEAT-based strategy generates placements for
new rooftop PV installations that improve overall carbon emissions
offset by 42% and significantly address distributional equity con-
cerns while also increasing the expected Energy Generation by 10%.
These positive results highlight the importance of site selection for
new solar panel installations. Using projections, we estimate that
an optimized strategy can accelerate progress toward goals such as
net-zero electricity generation by several years.
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