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ABSTRACT

The means of electrifying households and the resulting electric-
ity networks are rapidly evolving. Traditionally, an extension of
existing centralized grids was the only prominent technique, but
now electrification is seeing massive expansion via decentralized
solar home systems (SHSs). These systems consist of a low-wattage
photovoltaic (PV) panel (typically 5-100W), a battery, a collection of
energy-efficient DC appliances, and a charge controller. Spurred by
significant advances and reduced costs in solar, batteries, energy-
efficient appliances, and mobile money-driven business models,
SHSs have proliferated rapidly, with tens of millions of systems
now deployed, primarily in regions with otherwise low rates of
electricity access.

In this work, we profile a large deployment of solar home sys-
tems in Western Kenya to ascertain the dominant generation and
consumption patterns. We note that there are often substantial mis-
matches between generation and consumption, and that PV over-
generation presents an opportunity via networking of households.
We consider the opportunity to leverage system interconnection
to enable increased connectivity among households, challenging
typical electricity system architecture by effectively creating ad
hoc electricity grids at the edges of the overall electricity network.
Further, we consider the potential to integrate households without
SHSs ("passive nodes") into these electricity networks, as a low-cost
opportunity to increase electrification rates. Considering energy
curtailment, the spatial distribution of households, and infrastruc-
ture costs, we build a decision problem for interconnecting existing
SHSs with passive nodes. Our analysis shows that compared to the
all-SHS solutions that are presently achieving widespread deploy-
ment, we show that interconnecting existing SHSs can increase
electrification rates by more than 25% and reduce average costs by
up to 30% per household.
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1 INTRODUCTION

Globally 840 million people still have no access to electricity and
87% of them live in rural areas despite the recent improvements
in sustainable energy technologies that have accelerated energy
access in countries with unreliable or poor electrification rates
[4]. Communities in remote locations face serious challenges to
reach universal access since grid extensions have high economic
costs, time constraints, and terrain difficulties. As a result, only 30%
of rural areas are expected to be electrified from the central grid
[2, 26].

However, household electrification is no longer limited to exten-
sion of centralized grids. In the most recent decade, due to tech-
nology advances and cost reductions in solar photovoltaics (PV),
batteries, electronics for charge control, and energy-efficient appli-
ances, new classes of decentralized systems for electricity access
have emerged. These include microgrids, which are microcosms of
centralized grids that have received significant attention, as well
as solar home systems (SHSs), which are comprised of a PV panel,
battery, charge controller, and a few appliances. The proliferation
of these systems is crucial to meeting the UN Sustainable Develop-
ment Goal 7, whose aim is to "ensure access to affordable, reliable,
sustainable and modern energy for all" by 2030. To meet this uni-
versal electrification goal by 2030, it is estimated that decentralized
systems will be needed to provide access to 60% of households in
rural regions by 2030[4].
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Figure 1: The solar energy generation (red), energy consump-
tion (blue), the maximum generation potential (green), and
the battery voltage (black) on a typical day for an example
solar home system.

In this work, we focus on a new opportunity that has emerged
from the widespread deployment of solar home systems in certain
communities, typically with low electrification rates otherwise. In
particular, the low costs of PV panels and the mismatch of elec-
tricity generation and consumption patterns result in curtailment
of this renewable generation due to insufficient consumption. Fig-
ure 1 shows the interplay between generation, consumption, and
storage on a typical day for an SHS. We explore the potential to
interconnect SHSs and non-electrified households as a low-cost
means to increase household electrification. We build our analysis
upon an empirical dataset of solar generation and electricity con-
sumption among 14.5k SHS customers in Western Kenya, a dataset
of locations of all of the structures in the same region, and models
of the solar generation for the region. Considering energy curtail-
ment, spatial distribution of households, and infrastructure costs,
we build a decision problem for interconnecting SHSs with "passive
nodes" (non-electrified households). To understand the sensitivity
of this interconnection problem, we consider the effects of topology,
increased consumption, and initial SHS penetration. Our results
hint at the potential benefits of alternative architectures to electric-
ity networks, exploring the space between traditional centralized
electricity grids and fully decentralized solar home systems.

2 BACKGROUND AND RELATED WORK

As grid extensions become infeasible in rural areas due to difficult
access and high connection costs, Off-Grid Solar technologies (OGS)
have facilitated electrification at different tier levels [12]. There are
two main approaches used by OGS technologies: microgrids and
solar home systems. Existing literature on the context of shorter
distribution distances has typically proposed architectures to reach
rural electrification using solar PV-based DC microgrids. They of-
fer approximately 20% more efficiency than AC microgrids and
reduced AC/DC conversion and distribution costs [21, 29]. These
Low Voltage Direct Current (LVDC) distribution networks usually
use one of the following architectures [25]:

i) centralized generation and storage. In [20], the authors propose
a 250W solar PV-based microgrid that can supply households in
the vicinity of 100 to 150 meters with 136Wh of load per day per
household. A centralized monitoring system represents one of the
main advantages of this architecture given its simplicity and low
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cost. However, this type of architecture is prone to higher distribu-
tion losses and a lack of flexibility for future expansions since the
sizing and load analysis of the microgrid is required beforehand.

ii) centralized generation and distributed storage: Madduri et. al.
[21] designed a microgrid that can meet the electricity needs of
households within a 1 km radius. The system provides a Power
Management Unit (PMU) per household that can digitally com-
municate information such as electricity price, state of charge of
batteries, credits, and energy usage. Additionally, the microgrid has
a distributed control scheme to mitigate variability in grid power.
Distributed storage reduces losses and decouples individual house-
hold loads from communal energy use at night-time. However,
large centralized generation and robust power electronic devices
are required to implement the power-sharing schemes, increasing
the complexity and costs of this solution.

iii) distributed generation and distributed storage:. In [25], the
authors propose a distributed generation and distributed storage ar-
chitecture that consists of several solar PV-based nanogrids. Their
implementation offers bidirectional power flow and distributed
voltage droop control which are implemented through the duty
cycle control of a modified flyback converter. Another ad-hoc DC
microgrid is presented in [15] which presents a peer-to-peer elec-
tricity network enabled by PMUs. However, these implementations
require several subscribing households to make financial sense.
Microgrid developers perform a substantial assessment of the can-
didate communities before planning a deployment due to the high
risks in the investment arising from uncertain energy demand in the
target community [30]. Also, the sophisticated power control com-
ponents represent a higher capital cost which further constrains
the opportunity to provide tier 1 and 2 energy access.

Solar home systems have played a key role to fill the energy
access gap among lower energy consumers. Figure 2 illustrates the
layout of a typical SHS. For example, in Kenya, which leads the
African continent in SHS deployments, there were more than 400k
SHS deployed as of 2016 [11]. The majority of these products are
pico solar (<11Wp) used for tier 1 electrification and plug and play
SHS of less than 1kW. Even though these devices are reducing the
energy poverty gap, there are still many people that cannot afford
such devices. Approximately 10% of the world’s population lives
on less than $1.90 a day which makes it difficult to afford down
payments of tier 1 products that have total installed costs between
4.3 to 14.2 $/Watt [14]. There are several mechanisms that have
intended to reduce the affordability gap such as Pay as you Go
(PaYGo), supply-side incentives to develop new markets and serve
more users, and demand-side subsidies. However, there are still
240 million people that belong to this gap which requires $ 6.1 to
7.7 billion in external investment for OGS companies and up to
$3.4 billion of public funding to bridge the affordability gap [8].
Although financial access constitutes the main constraint, SHSs are
heavily subutilized [9] which creates opportunities to optimize the
use of these devices.

None of the aforementioned microgrid implementations address
the interconnection of existing SHS infrastructure with the neigh-
boring households with and without any storage device. In our
previous work on sharing SHS infrastructure [9], considerations
about time of use and increased consumption patterns were not
taken into account. In this work, we analyze these gaps and show
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Figure 2: Layout of a typical solar home system consisting
of a solar panel, charge controller, battery, and appliances
connected through a ready-board.

the opportunities to electrify neighboring households from existing
SHSs in a more realistic setting.

3 EXTEND: OVERVIEW

Extend explores the opportunities to increase tier 1 and 2 electrifica-
tion using existing SHS infrastructure. The idea is to share the un-
tapped energy generation potential of existing SHSs by connecting
them to non-SHS nodes. The energy transaction is unidirectional
and our simulation approach considers different topologies, the
cost of making a connection, the energy sharing potential of the
parent SHS, and the energy demand pattern of the child home when
deciding on a connection. We leverage the energy consumption and
solar generation profiles of real solar home systems deployed in
Kenya and Geographic Information System (GIS) data of building
structures in the same region for our simulation.

In this section, we outline (1) the details of the SHS and spa-
tial distribution datasets, (2) how we use the dataset to build solar
energy generation, energy consumption, and solar generation po-
tential models, (3) the details of additional models such as battery,
connection cost, and losses, and (4) the Extend simulation logic.

3.1 Datasets

To evaluate the potential increase in electrification by connecting
SHSs to passive nodes, we must accurately depict the solar energy
generation and energy consumption patterns of the SHSs. This
requires that we have the ground truth data of solar energy gen-
eration and consumption from actual SHSs. For this work, we use
a dataset collected over 23 months of more than 14.5K 50W SHSs
deployed in Western Kenya.

This dataset provides measurements of voltage, the current com-
ing in from the solar panel (generation), and current coming out
from the charge controller (consumption) at 15-minute granularity.
We transform these data to obtain hourly energy measurements in
watt-hour units and aggregate daily measurements for each SHS
to understand time of use patterns. Figure 5 illustrates clusters
of consumption and generation patterns from this dataset. Using
agglomerative hierarchical clustering techniques [17], we identify
5 clusters that describe the consumption and generation profiles.
In terms of consumption, all the clusters show an evening peak
between 6 and 10 pm and a slight increment of consumption in the
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morning that match the use of lighting loads. Besides, almost 50%
of the SHSs consume less than 20kWh a year, which is only 23% of
the expected capacity of these systems; further, only 2.7% of SHS
owners in this dataset have a high utilization consuming ~76 kWh
a year (90% of the expected capacity).

An important aspect of the planning of power infrastructure de-
ployment is the analysis of the variation of consumption of prospect
customers over time. Figure 4(a) shows the percentage change in
average monthly consumption and generation between 2017 and
2018. More than 80% of the SHSs had only +6% change in gen-
eration and +10% in consumption during that time frame. Also,
figure 4(b) illustrates the correlation between average consumption
during weekdays and weekends for each SHS. The red dotted line
shows the result of linear regression with an R-squared of 0.995 for
the equation weekday = weekend. This information suggests that
in the short term and at different time frames, the low consump-
tion and generation changes would allow an eventual networking
strategy to endure without the need to upgrade the infrastructure
required to meet future loads.

Besides SHS data, we use the spatial distribution of structures
in our analysis. This dataset was collected from satellite imagery
and consists of more than 360K geographic location of structures
in Homa Bay County, Kenya. It allows us to evaluate the impact
of the spatial distribution of households and the opportunities of
networking based on real layouts. While not all structures represent
households in practice, we make that assumption here, as it would
be difficult to classify each structure properly from satellite imagery.

In our simulation setup, we use SHS consumption and generation
profiles from this dataset and the spatial distribution of households.
However, there is significant prior work on developing model-based
and data-driven approaches to modeling the energy demand of
consumers. Similarly, there has been work on the modeling of the
power output of solar sites. While we do not use those approaches,
we outline relevant work along with the models we used for the
scenarios when large-scale ground truth data are not available.

3.2 Models

In this section, we describe various models that we use in our
simulation to account for estimating SHS generation potential,
battery charge/discharge characteristics, consumption patterns,
and energy distribution costs.

3.2.1 Energy Consumption. Our approach requires an energy con-
sumption model to estimate the energy demand of a solar home
system (SHS) or a non-SHS system that is to be electrified. The
modeling can be done using either a model-driven or a data-driven
approach. In a model-driven approach, the energy consumption
pattern for a site is generated by using energy demand signatures
of different appliances. The signatures are multiplexed over time
to match the expected aggregate demand curve for a home. Model-
driven approaches are useful for scenarios where no prior data are
available. In a data-driven approach, historical data from actual
SHSs are used to generate a distribution of energy demand patterns
and simulation logic assigns energy consumption to homes from
this distribution. This approach better reflects the ground-truth
energy demands of homes.
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Figure 3: Layout of a scenario for energy sharing using star topology in one of the regions of Homa Bay County, Kenya. Each
blue box shows the connections accomplished for each SHS in the area and its respective average daily energy generation
potential and consumption. Squares illustrate SHSs and circles passive nodes. The yellow box shows an example household
candidate that is not networked given the conditions of losses or load.
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Figure 4: (a) CDF of the average monthly percentage change
in generation and consumption between 2017 and 2018. (b)
Comparison of average consumption during weekdays and
weekends for each SHS. The best fit (y=x) is shown in red.

The most accurate approach is to use the raw data from actual
SHS deployments, an approach that we adopt in developing our
energy consumption model. To illustrate the typical energy con-
sumption behaviors of consumers in this dataset, we clustered the
energy consumption profiles of SHSs. Figure 5 (top) depicts the four
major energy demand patterns in the historical data. This demand
pattern is not well-suited for high solar energy utilization if the
battery is not sized properly. As a result, most of the homes do
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Figure 5: Clusters of the 90th percentile of daily energy con-
sumption and generation. The legend provides cluster size
(in %) and average yearly consumption. The red line illus-
trates the potential solar generation in the region.

not realize their energy generation potential. It should be noted
that these clusters are generated only for illustration purposes. We
assign the actual energy demand patterns from our SHS dataset to
the homes with or without SHSs. These energy consumption data
are available at 15-minute granularity and we downsample the data
to generate hourly consumption profiles.

3.2.2  Solar Energy Generation. Modeling power output for a solar
PV site can be done using physical modeling approaches or machine
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learning techniques. However, both approaches implicitly assume
sufficiently large load or a battery that does not restrict solar power
generation. Therefore, an estimation of solar energy generation
patterns for SHS systems with curtailed generation using the mod-
eling approaches would require simulation of a solar system with
a limited battery backup, a setup that would provide a restricted
power generation curve. Simulation setup with a physical modeling
approach can be used for scenarios when historical generation data
from the actual SHS are not available, but the physical parameters
for the site including location, capacity, tilt, and orientation are
known.

The SHS dataset provides the ground truth solar generation data
for each of the solar home systems. Figure 5 (bottom) depicts the
four major energy generation patterns in the historical data. We can
also observe a common generation curtailment between 9 and 11
a.m. where solar panels are producing only the amount of energy to
fully recharge the batteries after evening use and satisfy the small
energy demand. In our simulation setup we only consider the solar
generation potential since we expect to avoid the curtailment as
nodes are networked to existing SHS infrastructure.

3.2.3  Solar Generation Potential. Our approach uses a solar gener-
ation potential model to estimate how much energy an SHS would
have produced if it were not restricted by the fully charged battery
and the low energy consumption of an isolated solar home system,
as depicted in Figure 1. The generation potential model should
take into account the effect of system capacity, installation param-
eters such as tilt and orientation, and most importantly weather,
i.e., cloud cover. This model would provide the expected weather-
adjusted generation for a solar home system over the simulation
horizon at the desired time resolution, i.e., minutes, hours, or days.

Solar generation potential can be modeled using a variety of
different approaches. Prior work [9] has used PVWatts to estimate
a site’s annual energy generation potential [10]. While PVWatts
is good for estimating a site’s annual energy potential, its hourly
level estimates can be highly inaccurate [5]. Another approach is
to use machine learning techniques to model a site’s generation
potential using the data from existing solar home systems. How-
ever, this problem is different from typical ML-based modeling
approaches [28] because the historical solar generation does not
convey information about generation potential throughout the day.
An accurate approach would use the time periods when solar home
systems produce unrestricted generation, i.e. the first half of the
day. We leave the design and accuracy analysis of this approach for
future work.

Our implementation leverages Solar-TK [5], an open-source so-
lar performance model, to estimate a site’s generation potential
based on its location, time, physical characteristics, cloud cover, and
temperature. Solar-TK first generates a clear-sky maximum genera-
tion model by inferring the physical parameters of a site, such as
capacity, tilt, orientation, and temperature coefficient, from histori-
cal data. It next incorporates the effect of weather, i.e., cloud cover,
on the clear-sky generation to determine the expected weather-
adjusted output. Solar-TK fetches the temperature and cloud cover
data from Weather Underground and Darksky; both sources provide
hourly historical weather data for Homa Bay County, Kenya.
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3.2.4 Battery Model. The size of a battery and the energy stored
in it determine the amount of additional solar energy that can be
stored and how much energy consumers can withdraw from the
battery. Our simulation logic uses a battery model to imitate the
behavior of the sealed lead-acid batteries used in a typical SHS
setup. A battery model should accurately depict how the state of
charge (SoC) changes as it is charged or discharged and how its life
degrades over time. There is a lot of work on increasing the life of
lead-acid batteries by only controlling the externally controllable
factors such as charging/discharging rates and the allowed depth
of discharge (DoD). Prior work reports that the life of lead-acid
batteries depends upon the number of bad recharges, time since
last full recharge, and the lowest state of charge since last full
recharge [6]. While enhancing the lifetime of battery backups is an
important problem, the existing charge controllers in SHSs do not
employ explicit control mechanisms for life enhancement. Their
passive approach to battery lifetime enhancement only constrains
the charging/discharging rates and the minimum state of charge
allowed.

We use a battery model that is extensively utilized in prior work
on peak-reduction in industrialized countries, demand response,
and analyzing the impact of battery backups on stressed grids
of developing countries [6, 22-24]. This model requires setting
the battery capacity, maximum charge rate, maximum discharge
rate, and the maximum depth of discharge. The battery used by
SHSs in our dataset is a 17Ah, 12V battery, with a total storage
capacity of 204Wh. We set the maximum depth of discharge to 45%
as it minimizes the battery cost by balancing the usable storage
capacity with the lifetime for a typical battery designed for home
photovoltaic (PV) installations [22]. For the charge rate, sealed lead-
acid batteries are capable of fast charging up to a C/3 rate, i.e.,
charging to full capacity in three hours [19]. We set the charge
rate limit to C/4. Finally, the discharge rate has a huge impact
on the usable capacity according to Peukert’s law, However, the
consumption profiles in our dataset suggest that the maximum
discharge rate is ~25W. This discharge rate is less than 15% of usable
capacity and we can expect to extract all of the usable capacity at
such low rates. For modeling purposes and to allow the connection
of new nodes to the same battery, we set the discharge rate limit to
C.

3.25 Connection Cost. To evaluate the benefits of connecting a
non-served home (passive node) to an existing SHS, we need to
compare the cost of the connection to the potential revenue from
the excess energy. A connection between a passive node and an
existing SHS requires four components: a cable, a ready board where
users plug their appliances, a charge controller, and a battery. While
the cable and ready board costs apply to every connection, battery
and charge controller costs occur only when we assume that the
connecting passive node is deploying its own battery. In such cases,
we assume that the home is deploying a similar battery, 12V 17Ah,
to the existing SHS.

According to the most recent cost and market report for Africa
from the International Renewable Energy Agency (IRENA) [16], for
atypical sub-1kW SHS, which is between 4.3 and 14.2 USD/Watt, the
installation cost is approximately 2 USD/Watt including the ready
board. The charge controller costs approximately 0.7 USD/Watt
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and the storage component accounts for the largest share of the
entire infrastructure at $140. The cost split between battery, in-
stallation+ready board, and the charge controller is 29%, 7%, and
20%, respectively. For the cable’s cost, a 50 Watt SHS requires 14
AWG (1.5 mm diameter approximately) cable that costs around 0.58
USD/meter in Kenya [18].

3.26 Losses Model. To accurately model the available energy in
the system, we need to model the losses incurred when energy is
transferred from the SHS to a passive node with or without the
battery. We assume that this connection is made at the voltage
generated by the solar panel or the battery, both of which are
around 12V. This low voltage connection incurs significant losses
but avoids the cost and complexity of stepping up and down the
voltage level of connection. For our setup, we only consider the I2R
losses, where I is the current and R is the resistance of the cable.
The cable resistance depends upon its material, the temperature,
the length, and the gauge. We use a per meter resistance value of
0.0082 Ohms/meter for a 14 AWG wire made of copper and assume
a constant temperature.

Algorithm 1: Simulation Algorithm

Data: Iterations, nodes, patches, cons, gen, topology
Result: Electrification, connection costs per household.
initialization;
while it < iterations do
Randomly select a patch;
Randomly assign roles and consumption profile to
nodes;
for each SHS node do
Select all the nodes within 40m;
Build the adjacency matrix with selected nodes;
Get networked nodes using A pology (dist_matrix)
end
Calculate number of connections and costs;

end

3.3 Simulation logic

There are four main components of our simulation: the patch, SHS
node, passive node, and conformed graph. We split Homa Bay
County into independent patches of 1 km? and select the set of
spatial structures belonging to the given patch. The simulation logic
is initialized with this set of structures that belong to a randomly
selected patch of the region, the proportion and PV size of SHS
nodes, battery capacities, a proportion of passive nodes that are
battery-less, and a networking algorithm that generates either a
star or Minimum Spanning Tree (MST) topology. Each structure
in the patch has a role: SHS, passive node with storage, or passive
node without storage. These roles are randomly assigned using the

proportions of SHS and battery nodes specified in the initialization.

We use a default proportion of SHS of 30%, which is the proportion
of off-grid households in Kenya that have a solar product. [3] Nodes
with storage are assigned lead-acid batteries of 17Ah which is the
capacity of the SHS batteries in our dataset. For the simulation logic,
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Algorithm 2: A;0/0gy: Star

Data: Adjacency matrix, SHS node

Result: Graph of connected nodes

Initialize list of nodes connected so far;

while Neighboring nodes available do

Connect nearest node;

Calculate cable losses;

Run battery models with consumption and generation
profiles, and losses;

if SoC > 1 — DoD for entire time frame then
| Add node to list and update resulting graph;

end

end

our battery model initializes the SoC of these batteries at 70%, a
middle point between full charge and the recommended Depth of
Discharge (DoD) for lead-acid batteries (40% SoC).

After initialization, our simulation constructs graphs in the se-
lected patch based on a star or MST topology with root in the SHS
node. Each graph is built with the nodes that are located in a vicin-
ity of 40 meters based on a given networking algorithm for the
topology. We choose this conservative distance due to the impact
of losses in DC networks at 12V. Algorithm 1 shows the generic
procedure where cons and gen represent daily consumption and
generation profiles. Algorithms 2 and 3 illustrate the operation of
star and MST algorithm respectively. Algorithm 2 simply evaluates
the opportunity to connect each neighboring node from closest to
furthest iteratively. In contrast, algorithm 3 first calculates the MST
using Prim’s algorithm (lines 1-11)[7] and then evaluates the con-
ditions to connect neighbors. In both cases, we use a strict policy
which requires that the SoC of the batteries cannot be lower than
the DoD at any given time.

Finally, we build a Monte Carlo simulation that uses the randomly
sampled graphs and calculates electrification cost and rates given
the output of the battery model. If the state of charge of the SHS is
not completely depleted after a current state topology and for all
the hours of day, our algorithm keeps discovering the next node
in the topology and evaluates the opportunity to connect. This
randomized approach allows us to reduce the bias to a specific
scenario and measure electrification increase in the long run.

Our Monte Carlo approach numerically is used to evaluate ex-
pectations of random variables [27]. In our case, the goal is to
understand opportunities to augment electrification rates given a
randomized sample of conditions. In order to reach convergence in
our setting, we evaluate the number of iterations that reduce the
variation of our results. Figure 6 shows the variance of an experi-
ment as the number of iterations increases. For our experiments,
we used ten thousand iterations since it presents low variability at
a tractable running time of around 3 hours.

4 EVALUATION

In this section, we vary simulation parameters such as topologies to
interconnect underserved neighbors, the proportion of SHS nodes,
the scale of consumption patterns, and the proportion of passive
nodes with storage. We analyze the opportunities for networking
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Algorithm 3: A;,,0)0gy: Minimum Spanning Tree (MST)

Data: Adjacency matrix, SHS node
Result: MST graph of connected nodes
Initialize list of nodes connected so far;
Initialize all nodes;
for each node in adjacency matrix do

Set min(distance(node,connecting nodes)) to co;

Set parents of node to NIL ;
end
Set min(distance(SHS,connecting nodes)) to zero;
Build a min-priority queue Q of the graph based on the

minimum distance of connecting nodes;

while Q is not empty do
Extract node v with min (Q);
for each node in adjacency matrix(v) do

if node in Q and distance(v, node) <

min(distance(v,connecting nodes)) then
Set parent of node to v;
Set min(distance(v,connecting nodes)) to
distance(v,node)

end

end

end
Traverse resulting graph;
for each node in graph do
Calculate cable losses;
Run battery models with consumption and generation
profiles, and losses;

if SoC > 1 — DoD for entire time frame then
| Add node to list and update resulting graph;

end
end

SHS in real settings and the impact that each one of these parame-
ters has on electrification and connection costs.

4.1 Evaluation Metrics

We observe the impact of simulation parameters using two specific
metrics: electrification and cost of the distribution (or connection)
per household. Electrification is computed as the proportion of
nodes connected from the entire number of nodes in the selected
geography. For costs per household, we use our model described
in Section 3.2.5 and all the structures in a selected geographical
area are assumed to be a household. The total cost of the original
SHSs and the cost of connecting nodes with each other is divided
by the total number of households in a given geographical area
to compute the cost per household. A combination of these two
metrics allows us to assess this electrification strategy against the
current cost incurred in traditional energy access mechanisms.

4.2 Electrification and Cost

Three key parameters affect the electrification increase and the
cost incurred to achieve that electrification level: topology used
for connections, consumption and generation profiles of SHS and
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Figure 6: Variance in number of nodes connected (top) and
electrification achieved (bottom) decreases as the no. of iter-
ation increase.

passive nodes, and whether the passive nodes have storage. Next,
we evaluate the impact of these parameters.

4.2.1  Effect of Topology. Algorithms 2 and 3 present two connec-
tion strategies based on star and MST topologies. We evaluate the
impact of this parameter in the connection cost per household as
we vary the proportion of SHSs present. Figure 7 illustrates the
result of a simulation where each line represents a connection strat-
egy and its impact on the cost and cable length. The top graph
shows that both strategies present a negligible difference in cost
which becomes less noticeable as the proportion of SHS increases.
Different topologies affect the number of power lines that need to
be deployed. As we expect, MST is more efficient in the amount of
cable required; however, in this scenario, low-voltage lines account
for less than 8% of the distribution cost where the difference in
average length is at most 10 meters (bottom graph). Even though
this difference is relevant in terms of power losses in DC networks,
costs are not heavily impacted by this factor.

4.2.2  Impact of Changes in the Consumption Profiles. To better
understand the effect of consumption profiles in long term infras-
tructure deployment, we evaluate the possible electrification rate
when we use different scale factors for the consumption patterns.
The U.S. Energy Information Administration estimates that world-
wide renewable energy consumption increases by 3.1% per year [1]
which demands that energy infrastructure should last to attend the
future necessities of users. Among electricity consumers in Kenya,
demand also rises sharply, especially in initial years after connec-
tion [13]. In this experiment, we want to observe the robustness of
our networking strategy when the energy demand increases.
Figure 8 illustrates the effect of increasing consumption profiles
by a given factor as we vary the proportion of SHSs. Each line
shows the electrification rate at actual, 2x, and 3x consumption
increases. The vertical line represents an approximation of today’s
proportion of off-grid households in Kenya that have a solar product
[3] and the red dotted line illustrates the baseline electrification
with only SHS nodes. As a result, higher increments of energy
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Figure 7: Impact of different interconnection strategies as
proportion of SHS increase. Top: Distribution cost per house-
hold (USD per HH) where star and Minimum Spanning Tree
(MST) present low cost differences for proportions of SHS
less than 40%. The costs difference at higher proportions are
almost zero since fewer passive nodes are available to net-
work. Bottom: Difference in cable length (meters) for each
strategy. MST is more efficient in terms of wire length re-
quired; however, cable costs are minor.

demand reduce the electrification rate which seems to have more
relevance between a 30 to 50% proportion of SHSs. In this range,
we can observe electrification reductions of up to 10%. As the SHS
proportion approaches 100%, fewer passive nodes are available
to interconnect so the impact of different factors in electrification
shrinks. For the opposite case, few initial SHS nodes do not make an
impact on the overall electrification. This suggests an opportunity
to increase electrification using passive nodes, with an especially
pronounced potential in a particular range of electrification.
Another important result is the status of the storage devices
after the networking strategy. Figure 9 shows the average state of
charge of batteries by hour of day. Different bar color represents
two different scale factors of the consumption profile. As a result,
batteries are more depleted during the morning due to the impact of
two consecutive peaks of demand: one from the evening prior and
one in the morning. Low consumption during the middle of the day
allows the batteries to recharge using the available solar generation
and nodes with higher scale factors deplete their batteries more,
with an average difference of 6.5% in SoC between 1.5x and 3x.

4.2.3 Varying Passive Nodes with Storage. Passive nodes with stor-
age certainly affect the overall cost of electrification since batteries
account for almost 30% of the total infrastructure cost per house-
hold. We evaluate the average connection cost of all connected
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Figure 9: Average percentage of SoC by Hour of Day. Batter-
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tive demand peaks without additional supply. SoC increases
with the available solar generation and as scale factors of
consumption profiles increase, the average SoC decreases.

households with different proportions of passive nodes with stor-
age. These nodes are significantly more expensive but alleviate the
possible overload of SHS batteries. Figure 10 presents the results of
changing this proportion of devices. We fix the proportion of SHSs
deployed to 30% [3] and the red line illustrates the connection cost
per electrified household if only SHS devices were used to increase
electrification, which in this case is the approximate cost of a 50W
SHS (~USD 485). As a result, increasing access through connecting
neighbors with different proportions of battery nodes is less expen-
sive than using an all-SHS strategy. Even for high proportions of
battery nodes (70%), the connection cost per connected household
is reduced at least 12% (from USD 485 to USD 432). Further, for the
opposite case with 0% of nodes with batteries, the connection cost
is reduced 30% (a cost reduction of ~USD 145 per connected house-
hold on average) and could increase electrification to ~57%. We can
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Figure 10: Impact of passive nodes with battery to the con-
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a different proportion of battery nodes. The red line illus-
trates the connection cost per electrified household if only
SHS devices were used to increase electrification.

also observe that adding storage to the passive nodes does not have
a significant effect on increasing electrification. We believe that
this behavior is due to distribution losses and distance limitations
from the SHSs to neighboring nodes, as we limit the connections
to a SHS only with nodes within 40 meters distance to avoid large
voltage drops. Even though nodes with batteries have the capacity
to add more load, there are not additional nodes that meet these
constraints. We also believe that these results show that there is
ample PV generation to continue to augment electrification via
only increased connectivity, presenting a significant opportunity.

5 FUTURE WORK AND CONCLUSIONS

In this work we developed a framework to evaluate the viability of
connecting neighboring households to existing SHS infrastructure.
We observed an opportunity to utilize the excess generation from
standalone SHSs to share electricity with underserved users at a
fraction of the cost of electrifying the households otherwise. We
also show that an all-SHS electrification strategy, which is what
is effectively happening in many communities, is relatively more
expensive than our hybrid approach, and will likely lead to lower
electrification on its own.

By creating interconnections of households with complementary
consumption patterns, we show that it is possible to cost-effectively
achieve a middle ground between a fully-centralized electricity grid
and a fully-decentralized array of standalone SHSs. Our results
show the sensitivity of this framework to the variation of different
parameters such as topology of networking, changes in consump-
tion patterns and infrastructure cost. It is possible to observe cost
reductions of up to 30% per connection and increase in electrifica-
tion by almost 2x using today’s proportion of off-grid households
in Kenya that have a solar product.

Further exploration of this nascent space can enable faster and
more equitable expansion of electricity access, accelerating progress
towards universal electrification and UN Sustainable Development
Goal 7.
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