
Carbon- and Precedence-Aware Scheduling for Data Processing Clusters

Adam Lechowicz
University of Massachusetts Amherst

Rohan Shenoy
University of California Berkeley

Noman Bashir
Massachusetts Institute of Technology

Mohammad Hajiesmaili
University of Massachusetts Amherst

Adam Wierman
California Institute of Technology

Christina Delimitrou
Massachusetts Institute of Technology

Abstract
As large-scale data processing workloads continue to grow,

their carbon footprint raises concerns. Prior research on
carbon-aware schedulers has focused on shifting computation
to align with availability of low-carbon energy, but these ap-
proaches assume that each task can be executed independently.
In contrast, data processing jobs have precedence constraints
(i.e., outputs of one task are inputs for another) that complicate
decisions, since delaying an upstream “bottleneck” task to a
low-carbon period will also block downstream tasks, impact-
ing the entire job’s completion time. In this paper, we show
that carbon-aware scheduling for data processing benefits
from knowledge of both time-varying carbon and precedence
constraints. Our main contribution is PCAPS, a carbon-aware
scheduler that interfaces with modern ML scheduling policies
to explicitly consider the precedence-driven importance of
each task in addition to carbon. To illustrate the gains due to
fine-grained task information, we also study CAP, a wrapper
for any carbon-agnostic scheduler that adapts the key provi-
sioning ideas of PCAPS. Our schedulers enable a configurable
priority between carbon reduction and job completion time,
and we give analytical results characterizing the trade-off
between the two. Furthermore, our Spark prototype on a 100-
node Kubernetes cluster shows that a moderate configuration
of PCAPS reduces carbon footprint by up to 32.9% without
significantly impacting the cluster’s total efficiency.

1 Introduction

Concerns about the climate impact of machine learning (ML)
and artificial intelligence (AI) have primarily revolved around
the carbon footprint during the training phase [28, 63] or,
in some cases, the inference phase [37] of their life cycle.
However, as the data requirements of foundation models have
ballooned, the data processing tasks that must be completed
before training account for almost one-third of the cumula-
tive computation for an AI model during its life cycle [64].
Furthermore, foundation model finetuning generally trains a

model on a narrower data set that may require additional data
processing [51] – as the finetuning of general purpose models
(e.g., Llama) for specific tasks [41, 42] has gained traction,
the comparative fraction of computational demand borne by
data processing tasks is expected to grow.

Therefore, efforts towards responsible and sustainable de-
velopment in AI must consider and optimize the carbon foot-
print of data processing. Even beyond sustainability, com-
panies such as Microsoft have implemented internal carbon
pricing for short- and long-term decisions [19, 57] that put
financial responsibility on business divisions for each metric
ton of operational CO2 that they emit. In the data center con-
text, most current schedulers do not consider the time-varying
aspect of carbon intensity and the resulting compute-carbon
impact – this must change to accommodate additional opera-
tional concerns such as carbon pricing.

Data processing frameworks (e.g., Apache Spark) ingest
workloads that are composed of precedence-constrained tasks,
where e.g., the outputs of one operation are the inputs to
another [66]. There is a rich literature studying schedul-
ing algorithms for this case of precedence-constrained tasks
(e.g., represented as a directed acyclic graph (DAG)) that
characterize large-scale data processing. From the theoreti-
cal side, optimal scheduling of precedence-constrained tasks
(in terms of total completion time) is known to be NP-
hard [36]. Although there has been progress in approxima-
tion techniques [11, 14, 15, 32, 39, 47, 58, 59], the hard-
ness of the problem necessitates simple settings with rela-
tively strong assumptions. From an experimental perspective,
there have been several studies proposing data-driven and/or
evolutionary approaches for scheduling, both in the general
precedence-constrained tasks case and the specific data pro-
cessing case [10, 16, 26, 30, 38, 48, 52, 65, 68]. In recent
years, such works have leveraged learning techniques such as
graph neural networks (GNNs) and reinforcement learning
(RL) to learn an improved scheduling policy, showing signif-
icant improvements in experiments. However, owing to the
complexities of these approaches, theoretical guarantees for
learning-based approaches have proven difficult to obtain.

1

ar
X

iv
:2

50
2.

09
71

7v
1

 [
cs

.D
C

]
 1

3
Fe

b
20

25

Beyond the singular objective of job completion time, a
select few works have considered settings that are closer to
the carbon-aware problem we study in this paper [24, 43, 59].
These multi-objective scheduling environments balance the
objectives of e.g., reducing job completion time alongside
another metric of interest, such as cost. For instance, several
works have considered energy efficiency in tandem with job
completion time, from both theoretical and experimental per-
spectives. Su et al. [59] study energy-aware list scheduling
for precedence constrained tasks, giving theoretical bounds
for an combined objective of energy consumption and per-
formance. GreenHadoop [24] is a MapReduce framework
for data centers with local renewable sources that predicts
the future availability of carbon-free (“green”) electricity and
schedules jobs accordingly, subject to deadlines for individual
jobs. Liu et al. [43] consider job scheduling for low-carbon
data center operation in a general model with both DAG and
non-DAG jobs – they develop an RL-based scheduler that
focuses primarily on increasing energy-efficiency.

Despite these previous works, focusing on carbon-
efficiency rather than energy-efficiency requires different tech-
niques. In particular, while carbon-efficiency and energy-
efficiency are sometimes complementary objectives, they are
often contradictory [27] – for instance, due to the time-varying
nature of carbon intensity, it may be advantageous to scale up
during low-carbon periods (i.e., sacrificing energy efficiency)
in exchange for the ability to scale down during high-carbon
periods. Works that do consider carbon emissions (e.g., Green-
Hadoop) use abstractions, such as job-level deadlines and
“green” vs. “brown” energy, that do not adequately model the
current m.o. in data centers.

To address this multi-objective setting while catering to
realistic scenarios, we propose that a middle-ground approach
is needed – namely, by drawing on techniques from the theo-
retical literature for precedence-constrained and carbon-aware
scheduling, and simultaneously considering experimental ad-
vances, we seek a simple and interpretable framework that
comes with guarantees in terms of the trade-off between job
completion time and carbon savings.

In this paper, we propose PCAPS (Precedence- and Carbon-
Aware Provisioning and Scheduling), a carbon-aware sched-
uler for data processing clusters. PCAPS is theoretically-
inspired, leveraging a paradigm of interpretable and config-
urable threshold-based design that informs decisions at each
time step based on e.g., the current carbon intensity and/or car-
bon price. In keeping with this inspiration, we give analytical
results that characterize the trade-off between job completion
time and carbon savings. PCAPS is also practically relevant,
drawing on recent insights from ML-based DAG schedulers
(e.g., Decima [48], LACHESIS [68], and others [26, 38, 65]).
By interfacing with a score or probability distribution over
available tasks, PCAPS defines a notion of relative importance
(i.e., compared to other tasks) – this allows it to make fine-
grained carbon-aware decisions that take the DAG’s structure

into account, such as continuing to schedule bottleneck tasks
even if carbon intensity is high. See Section 4.1 for a formal
description of PCAPS’s design.

As a simplification of PCAPS, we additionally propose and
study CAP (Carbon-Aware Provisioning), which takes the pro-
visioning ideas of PCAPS and generalizes them to interoperate
with any carbon-agnostic scheduler. Without explicitly con-
sidering inter-task dependencies, CAP changes the resources
available to the cluster, capturing an intuition that clusters
should throttle down during high-carbon periods and vice
versa [28, 54] – see Section 4.2 for a description.

We have implemented PCAPS and CAP as modules for
Spark on Kubernetes and as extensions for a high-fidelity
simulator [48]. Our experiments consider real and synthetic
data processing workloads from Alibaba traces and TPC-
H [1, 60], alongside real carbon intensity traces from six
power grids [18]. In our prototype implementation, we eval-
uate PCAPS and CAP on a 100-node Spark cluster. We report
the impact of carbon-aware policies on both job completion
time and carbon savings, showing that PCAPS and CAP’s con-
figurable design enables notable carbon reduction for mild
increases in end-to-end completion time, which measures the
total time to complete all jobs in a given experiment, mea-
suring the system’s overall throughput and efficiency. We
summarize our key contributions as follows:

1. PCAPS, a carbon-aware scheduler that interfaces with a
probability distribution over stages of a DAG, such as
those provided by ML schedulers. PCAPS incorporates
carbon into decisions that arbitrage between stages of
a job at a granular level, obtaining a favorable trade-off
between carbon savings and job completion time.

2. CAP, a carbon-awareness module that dynamically adjusts
cluster resources without replacing an existing sched-
uler (see Section 4.2). Compared to PCAPS, it obtains a
worse trade-off between carbon and completion time in
exchange for flexibility and ease of implementation.

3. We analyze the carbon stretch factor for PCAPS and CAP,
which bounds the increase in job completion time due to
carbon-aware actions (e.g., see Theorems 4.5 and 4.3).

4. We implement PCAPS and CAP as extensions for a high-
fidelity Spark simulator, alongside proof-of-concept pro-
totypes for Spark on Kubernetes (see Section 5). We
evaluate our proposed carbon-aware schedulers against
baselines and a state-of-the-art ML scheduler (see Sec-
tion 6).

2 Problem and Motivation

This section formalizes the carbon-aware scheduling problem
and motivates insights to contextualize our desiderata.
Our experiment code is available at https://github.com/umass-solar/
carbon-aware-dag/.

2

https://github.com/umass-solar/carbon-aware-dag/
https://github.com/umass-solar/carbon-aware-dag/

Figure 1: Four scheduling policies for a motivating DAG and 18-hour-long carbon intensity trace (on the left hand side).
Compared to a carbon-agnostic FIFO scheduler, the time-optimal approach (T-OPT) prioritizes starting the green and purple
stages early to reduce completion time. A carbon-aware-optimal approach (C-OPT) with a deadline to finish the DAG within 18
hours reduces carbon emissions by 51.2%, at the expense of increasing time by 28.5% compared to FIFO. By prioritizing green
and purple stages during high-carbon periods, PCAPS reduces carbon emissions by 23.1% and still completes the job 7% earlier
compared to FIFO.

2.1 Carbon-aware DAG scheduling problem
Each job is represented as a directed acyclic graph (DAG)
J = {V ,E}, where each node in V is one of n tasks, and each
edge in E encodes precedence constraints between tasks –
e.g., for tasks j, j′ ∈V , an edge j→ j′ indicates that j′ cannot
start until after j has completed. A typical data processing
cluster includes K≥ 1 machines (or executors). More than one
job can simultaneously run on a cluster – e.g., given a set of
current jobs {J }, the scheduler assigns tasks to machines over
time while respecting precedence and capacity constraints.
We index continuous time by t ≥ 0.

The goal of a typical scheduler is performance, e.g., in
terms of throughput, utilization, and average job completion
time. In this work, we additionally consider the goal of carbon-
awareness – with respect to a time varying carbon signal
given by a function c(t) : t ≥ 1, a carbon-aware scheduler’s
objective is to minimize a combination of typical metrics (i.e.,
job completion time) and the overall carbon footprint (on both
a per-job and a global, cluster basis).

Although future values of this carbon signal are unknown
to the scheduler, in the rest of the paper, we follow prior
work [5, 33] and assume that it is bounded by constants L and
U that are known to the scheduler, where L ≤ c(t) ≤U . In
practice, the values of L and U can capture e.g., short-term
forecasts of the best and worst carbon conditions on a given
electric grid over the next 24 or 48 hours.

2.2 Prior work and motivation
Scheduling directed acyclic graphs (DAGs), or more broadly,
precedence-constrained tasks, has been extensively studied.
Classic results establish the difficulty of this problem: even
in its simplest forms, DAG scheduling is NP-hard [36]. To
address this, prior work has developed heuristic methods and
approximation algorithms [11, 14, 15, 32, 39, 47, 58, 59],
ranging from the well-known list scheduling algorithm [25],
priority-based algorithms [55], to more complex approaches

such as genetic programming [10, 16, 52]. These methods
often rely on simplifying assumptions, such as fixed task
durations or centralized knowledge of the task graph.

In recent years, DAG scheduling has become a key prob-
lem in data processing frameworks such as Apache Airflow,
Beam, and Spark, which use DAGs to represent workflows.
In Spark, each node of a job’s DAG corresponds to a stage,
which encapsulates operations (tasks) that can be executed
in parallel over partitions of input data. Inter-stage dependen-
cies impose precedence constraints: a stage can only begin
once all “parent” stages have completed. Frameworks such as
Spark typically implement simple scheduling strategies such
as first-in, first-out (FIFO) and fair-share scheduling [22] –
these are explainable and efficient in terms of overhead, but
suboptimal in terms of job completion time.

Recent works that revisit scheduling for data processing
have explored learning-based techniques, such as reinforce-
ment learning (RL) methods that dynamically learn schedul-
ing policies [26, 30, 38, 48, 65, 68]. Although these methods
outperform default policies and hand-tuned heuristics in terms
of job completion time, theoretical results for these techniques
have proven difficult to obtain.

Carbon awareness adds a new dimension to the DAG
scheduling problem – an online scheduler must consider the
time-varying carbon intensity while choosing to assign re-
sources to specific nodes in the job DAG(s), with an overar-
ching goal of reducing carbon footprint, combined with tra-
ditional metrics such as job completion time – see Fig. 1 for
an illustration of this desired behavior for PCAPS, FIFO, and
optimal schedules. As discussed above, the state-of-the-art
for carbon-agnostic DAG scheduling falls into two categories:
theoretical models that focus on provably near-optimal sched-
ules under idealized assumptions, and heuristic or learning-
based methods that do not provide theoretical bounds but
perform well in practice. In adding carbon-awareness to the
problem, we consider a middle ground that balances between
design goals of simplicity, interpretability, configurability, and

3

performance. In particular, we seek a carbon-aware sched-
uler that is tractable for theoretical insight, offering provable
bounds on, e.g., the trade-off between carbon and job comple-
tion time while not sacrificing the efficiency gains that come
from, e.g., learning DAG structure.

3 Theoretical Foundations

This section details theoretical underpinnings and intuition
for our design in Section 4. Recent literature has stud-
ied carbon-aware scheduling problems with a theoretical
lens [5, 33, 34, 35], spanning relatively simple suspend-
resume [33] to settings considering scaling and uncertainty in
job lengths [5]. In these online carbon-aware scheduling prob-
lems, the key challenge is the inherent uncertainty in future
carbon intensity values due to the proliferation of intermittent
renewable energy sources.

A common approach to manage this uncertainty is
threshold-based design [4, 33, 63], that uses a predetermined
and parameterized threshold function to inform decisions.
Among studies that use this design paradigm, a common the-
oretical performance metric is competitive ratio, which is the
worst-case ratio (≥ 1) between the cost of an online algorithm
vs. that of an optimal solution. Algorithms designed using this
metric are known to be pessimistic in practice [46, 53]. More-
over, existing theoretical studies on carbon-aware scheduling
focus on simple settings where, e.g., the job is bound by a
deadline, the objective is only to reduce carbon, and prece-
dence constraints are not considered. However, threshold-
based algorithms have been demonstrated to work well in
practice: they are often close to optimal provided their inputs
are reasonably accurate [13].

Carbon-aware DAG scheduling exhibits an inherent trade-
off between carbon savings and job completion time (JCT).
Although worst-case metrics (i.e., bounds with respect to an
intractable offline solution) have limited utility in this setting,
it is still useful to quantify a trade-off between carbon and
JCT – to this end, we introduce two metrics that we use in
the following sections. We start by introducing some notation:
let OPTK(J) denote the optimal makespan for job J , and let
ALGK(J) denote the makespan for the schedule generated by
some scheduler ALG (all using a maximum of K machines).

Definition 3.1 (Carbon Stretch Factor (CSF)). Given a
scheduling policy (e.g., FIFO), let AG denote the regular
(i.e., carbon-agnostic) scheduling policy, and let CA denote a
carbon-aware variant of the same scheduling policy. If a is
an upper bound such that AGK(J)≤ a ·OPTK(J) : ∀J , and b is
an upper bound such that CAK(J)≤ b ·OPTK(J) : ∀J , where
b≥ a, then the carbon stretch factor is defined as b/a, which
indicates (multiplicatively) how much worse the makespan of
CA is compared to AG. Note that b/a≥ 1.

To quantify carbon savings, we define CALG(t) as the instanta-
neous carbon emissions at time t due to decisions by scheduler

ALG. It is a function of the number of executors active in ALG’s
schedule at time t (denoted by EALG(t)) and the current carbon
intensity: CALG(t) := c(t)EALG(t).

Definition 3.2 (Carbon Savings). Let AG and CA denote a
carbon-agnostic and carbon-aware scheduler as outlined in
Def 3.1. For a job J , if AG runs from time step 0 until T (its
completion time), and CA operates from time 0 to T ′, then CA’s
carbon savings are given by

∫ T
0 CAG(t)−

∫ T ′
0 CCA(t).

Using CSF and carbon savings, we describe the desired behav-
ior of a carbon-aware scheduler for data processing. A basic
intuition in threshold-based designs is “hedging” between
completing tasks now and waiting for lower-carbon periods
that may arrive. To do this, thresholds rely on the range of
carbon intensities that are expected to appear in the near fu-
ture (i.e., L and U). In the context of CSF, this translates into
two conditions that a scheduler should satisfy:

i) If the fluctuation of carbon intensity is low (e.g., L and
U are close), the CSF should be close to 1, i.e., JCT should
be close to that of the carbon-agnostic algorithm.

ii) If the fluctuation is high (e.g., L and U are not close),
the CSF should be finite, i.e., the scheduler does not wait
indefinitely to complete the job. In threshold-based designs,
this is often met by imposing a deadline on the job [24, 33].

In the context of the DAG scheduling for data processing
workloads, additional unique challenges exist. For instance,
in the single job settings considered by prior work, specifying
a deadline for each job is straightforward [5, 33]. However, on
a cluster scale that considers multiple jobs of unknown length
and different arrival times, setting a proper deadline quickly
becomes complicated. Instead, our schedulers (see Section 4)
guarantee a minimum amount of job progress whenever there
are outstanding tasks in the queue.

Due to precedence constraints, carbon-aware scheduling
actions that do not consider the structure of the DAG may
inadvertently block bottleneck tasks from processing, having
a large negative impact on JCT. This gives a third condition:

iii) When fluctuation is high (i.e., L and U are not close)
and the system is in a high-carbon period, a scheduler should
carefully consider the structure of a job’s DAG, prioritizing
bottleneck tasks to use the limited cluster resources.
Conditions i - iii) summarize the desired high-level behavior
of a carbon-aware scheduler for data processing workloads.
In the following section, we present PCAPS that takes into
account the above conditions in its design.

4 Design

In this section, we present PCAPS, our Precedence- and
Carbon-Aware Provisioning and Scheduling system, and then,
as a flexible and easy-to-implement alternative, we present
CAP (Carbon-Aware Provisioning).

4

Figure 2: PCAPS interfaces with a probabilistic (PB) schedul-
ing policy. Given a probability distribution over nodes ➊,
PCAPS computes a relative importance score ➋ that is used
to determine which nodes should run based on the current
carbon intensity ➌ – e.g., bottleneck nodes impeding job com-
pletion run regardless of carbon ➍, while less important nodes
can be deferred for lower carbon periods ➎.

4.1 PCAPS

From the discussion in Section 3, we seek an interpretable
and configurable scheduler that satisfies the conditions i - iii).
To this end, we introduce PCAPS (Precedence- and Carbon-
Aware Provisioning and Scheduling), which interfaces with a
probabilistic DAG scheduler such as Decima [48].

PCAPS’s key idea is a metric of relative importance (Def.
4.2) that is implicitly embedded in a probability distribution
over tasks. We define a configurable carbon and importance-
aware threshold function that uses the relative importance
metric to make per-task fine-grained scheduling decisions – as
illustrated in Fig. 2. Next, we detail how the theoretical litera-
ture on threshold-based algorithms inspires PCAPS, describe
its operation, and discuss analytical results that characterize
the trade-off between carbon savings and JCT.
PCAPS design. We first formalize a class of probabilistic
schedulers that PCAPS interfaces with, giving a concrete ex-
ample of an ML scheduler in this class.

Definition 4.1 (Probabilistic Scheduler). At each schedul-
ing event,1 a probabilistic scheduler generates a distribution
{pv,t : v∈At}, where At denotes the set of tasks that are ready
to be executed at time t.

One example of a probabilistic scheduler is Decima [48], an
RL-based scheduler for data processing workloads. Decima
learns actions in the form of scores for each task – a masked
softmax is applied to these scores to obtain a probability
distribution over At , and the next scheduled task is sampled
from this distribution. Recall the motivation behind PCAPS:
in addition to ramping down during high-carbon periods and
ramping up during low-carbon periods, bottleneck tasks (i.e.,
tasks with a large score) should be scheduled even if the
carbon intensity is high to reduce JCT. To this end, we define
a notion of relative importance that compares the probability
mass assigned to a single task v against other tasks in At .

1Scheduling events include job arrivals, task completions, and machines
becoming available.

Algorithm 1 PCAPS (Precedence- and Carbon-Aware Provi-
sioning and Scheduling)

1: input: hyperparameter γ, threshold function Ψγ(·), probabilistic
(carbon-agnostic) scheduler PB

2: define: a scheduling event occurs whenever PB is invoked or the
carbon intensity c(t) changes

3: while cluster active at time t ≥ 0 do
4: if scheduling event at time t then
5: Sample v ∈ At and probabilities pv,t : v ∈ At from PB
6: Compute relative importance rv,t =

pv,t
maxu∈At pu,t

7: if Ψγ(rv,t)≥ c(t) or no machines currently busy then
8: Send task v to an available machine at time t
9: else

10: Idle until next scheduling event

Definition 4.2 (Relative Importance). Given a time t ≥ 0 and
node v ∈ At , the relative importance rv,t is defined:

rv,t :=
pv,t

maxu∈At pu,t
∈ [0,1].

If a task’s relative importance is closer to 1, the task is rel-
atively more important, and a value closer to 0 implies the
opposite. Note that if |At |= 1 (i.e., only one task can be sched-
uled), the importance of that task is 1. Leveraging inspiration
from threshold-based design, we define scheduling decisions
using a threshold function Ψγ that considers the current car-
bon intensity and the relative importance of a task. γ ∈ [0,1]
is a carbon-awareness parameter that controls the “strictness”
of the function: γ = 0 recovers carbon-agnostic actions, while
γ = 1 is maximally carbon-aware for tasks with low relative
importance. We define Ψγ as:

Ψγ(r) := (γL+(1− γ)U)+ [U− (γL+(1− γ)U)]
exp(γr)−1
exp(γ)−1

,

The function Ψγ(.) exhibits an exponential dependence on
r, the relative importance of a task. This draws on continu-
ous versions of online search [17, 69], where an exponential
trade-off is derived by balancing the marginal reward of the
current price against the risk that better prices exist in the
future. We interpret relative importance analogously: high-
importance tasks are scheduled regardless of carbon intensity
to avoid the negative impact of not scheduling them, while
low-importance tasks can be deferred to wait for lower-carbon
periods with less impact on JCT. This threshold function is
used in a carbon-awareness filter of sampled tasks before
they are scheduled– we formalize this in Algorithm 1:
PCAPS’s carbon-awareness filter accomplishes all three of the
motivation points defined in Section 2.2. It schedules (or de-
fers) tasks based on the current carbon intensity c(t), with the
effect of reducing execution during high-carbon periods. Fur-
thermore, the likelihood of a task being scheduled irrespective
of the current carbon intensity is proportional to its impor-
tance in the DAG (i.e., in terms of precedence constraints).
Note that Ψγ(1) = U – tasks with high relative importance
are always scheduled. While deferring a task has a negative

5

Figure 3: Illustrating PCAPS’s carbon-awareness filter. Jobs A
and B are DAGs found in TPC-H queries and Alibaba traces,
respectively [1, 60]. Highlighted nodes explain two schedul-
ing outcomes. In job A, the sampled node has low relative
importance, so it is deferred. In contrast, job B’s sampled node
is a bottleneck task with high relative importance: even when
the current carbon intensity is high, such tasks are scheduled
to avoid increasing job completion time.

impact on an individual job’s JCT, PCAPS is optimized for
the case where multiple DAGs share a cluster. Prioritizing
outstanding bottleneck tasks across all jobs helps to manage
the system’s end-to-end completion time (ECT) for e.g., a set
of jobs. In Fig. 3, we illustrate the intuitions behind PCAPS’s
carbon-awareness filter using two sample job DAGs.
Analytical results. We analyze the carbon stretch factor
(Def. 3.1) and carbon savings (Def. 3.2) for PCAPS, with full
proofs in Appendix B.1. PB denotes a carbon-agnostic proba-
bilistic scheduler throughout. For an arbitrary job J , we let
D(γ,c)∈ [0,1] denote a function that depends on the expected
amount of deferrals (i.e., the tasks that PCAPS prevents from
being scheduled, which depends on the carbon signal c). See
Appendix B.1.1 for a formal definition.

Theorem 4.3. For time-varying carbon intensities given by c,
the carbon stretch factor of PCAPS is 1+ D(γ,c)K

2− 1
K

.

At a high level, D(γ,c) describes the fraction of tasks (in terms
of total runtime) that are deferred by PCAPS with a given γ

and carbon trace c. It is ≤ 1 for any γ, and D(0,c) = 0 for
any c. As γ grows and PCAPS becomes “more carbon-aware”,
D(γ,c) grows and CSF increases accordingly.

We also analyze the carbon savings of PCAPS. Suppose
PB’s schedule finishes at time T , and PCAPS’s finishes at time
T ′ (where T ≤ T ′). We let W denote the excess work that
PCAPS must “make up” with respect to PB’s schedule (i.e., due
to deferrals) – note that this implicitly depends on the carbon
stretch factor. We let s(0,T)− , s(0,T)+ , and c(T,T

′) denote weighted
average carbon intensity values based on the schedules of
PB and PCAPS. In short, s(0,T)− captures the carbon emissions
that PCAPS avoids due to deferrals between time 0 and time
T , s(0,T)+ captures the extra carbon (if any) incurred by PCAPS
due to higher utilization relative to PB between time 0 and
time T , while c(T,T

′) captures the emissions that PCAPS incurs
after time T . See Appendix B.1.1 for formal definitions of
these quantities.

Figure 4: The CAP (Carbon-Aware Provisioning) module in-
teracts directly with a cluster manager to specify the amount
of resources (e.g., no. of machines) that can be used at any
given time, based on a carbon intensity signal. CAP can be im-
plemented without changes to an existing scheduling policy
and/or the cluster manager.

Theorem 4.4. For time-varying carbon intensities given by c,
PCAPS yields carbon savings of W (s(0,T)− − s(0,T)+ − c(T,T

′)).

Taken together, Theorem 4.3 and 4.4 characterize the carbon-
time trade-off for PCAPS, implying that a larger CSF unlocks
greater potential carbon savings.

4.2 Carbon-aware provisioning (CAP)
While PCAPS captures all three intuition points in Section 3 by
interfacing with a probabilistic scheduler, many existing data
processing schedulers use simple policies such as FIFO [22].
This naturally prompts the question of how PCAPS can be
simplified to retain many of the same qualities, while inter-
operating with any scheduler. In particular, PCAPS implicitly
performs resource provisioning, changing the amount of re-
sources available to the cluster based on carbon – this is a
key technique used by prior work in carbon-aware schedul-
ing [28, 54]. In this section, we introduce CAP (Carbon-Aware
Provisioning), a simplified policy that applies a time-varying
resource quota to the cluster and coexists with any underly-
ing scheduler. In what follows, we motivate the design and
discuss analytical results on its carbon-JCT trade-off.
CAP design. Given a cluster with K machines, the pos-
sible resource quotas are given by {0,1, . . . ,K}. This set
calls to mind the k-search problem [45], where an online
player must choose when to purchase k items over a deadline-
constrained sequence of time-varying prices. Variants of k-
search have been applied to carbon-aware scheduling with
deadlines [27, 33]. CAP uses the k-search threshold set, which
captures the trade-off between executing now and waiting
for better carbon intensities. Instead of using a deadline, CAP
frames the problem of determining a resource quota as re-
peated rounds of (K−B)-search, where a minimum quota
B∈ {1, . . . ,K} always allows the cluster to use≤ B machines,
ensuring continuous progress on jobs. The thresholds are
given by:

ΦB =U ; Φi+B =U−
(

U− U
α

)(
1+

1
(K−B)α

)i−1
: i∈{1, . . . ,K−B},

where α is the solution to
(

1+ 1
(K−B)α

)(K−B)
= U−L

U(1− 1
α
)
. Each

6

of these thresholds corresponds to a carbon intensity, and a
quota is set based on how many values are above the current
carbon intensity. Formally, the resource quota at time t is
r(t)← argmaxi∈R Φi : Φi ≤ c(t). For ease of implementation,
this quota is enforced without preemption; when machines
become available, new task assignments are only allowed if
r(t) is greater than the number of busy machines.
Analytical results. We analyze the carbon stretch factor
(Def. 3.1) and carbon savings (Def. 3.2) for CAP, with full
proofs in Appendix B.2. AG denotes a carbon-agnostic base-
line scheduler throughout. Suppose CAP’s schedule completes
at time T ′. We let M (B,c) denote the minimum resource cap
specified by CAP at any point in its schedule (note this depends
on the carbon signal c). Formally, M (B,c) := argmaxi∈[K] Φi :
Φi ≤ c(t) ∀t ∈ [0,T ′].

Theorem 4.5. For time-varying carbon intensities given by c,

the carbon stretch factor of CAP is
(

K
M (B,c)

)2 2M (B,c)−1
2K−1 .

We also analyze the carbon savings of CAP. If AG’s schedule
finishes at time T (where T ≤ T ′), we use W as shorthand to
denote the excess work that CAP must complete after time T
(i.e., after AG has completed). As in Theorem 4.4, we let s(0,T)

and c(T,T
′) denote weighted average carbon intensity values

based on the schedules of AG and CAP, respectively – in short,
s(0,T) captures the carbon emissions that CAP avoids by defer-
ring W amount of work relative to AG, while c(T,T

′) captures
the emissions that CAP incurs after time T . See Appendix
B.2.2 for formal definitions of all three quantities.

Theorem 4.6. For time-varying carbon intensities given by c,
CAP yields carbon savings of W (s(0,T)− c(T,T

′)).

Theorem 4.5 and 4.6 imply that a larger CSF unlocks greater
carbon savings for CAP. We explore the relative performance
of PCAPS vs. CAP in our experiments, in Section 6.

5 Implementation

We have implemented proof-of-concepts of PCAPS and CAP
for Apache Spark on Kubernetes – see Section 5.1 for details.
We also conduct large-scale experiments in a realistic Spark
simulator – see Section 5.2 for how we extend an existing
simulator [48] to evaluate carbon-aware scheduling policies.

5.1 Spark and Kubernetes integration
Resource scaling & stage scheduling. In Spark deployed
on a Kubernetes cluster, each application is submitted to the
API server [6] that creates a “driver” running in a pod. We
use Spark’s dynamic allocation feature, which enables the
driver to create executor pods dynamically as needed by the
application – these executors connect with the driver and
execute application code. Kubernetes handles the scheduling
of (driver and executor) pods for each application, while the
Spark driver selects stages to execute within an application.

To implement CAP, we develop a Python daemon that gets
carbon intensity from an API (e.g., Electricity Maps [18])
and adjusts the resources available to Spark. CAP sets a re-
source quota [2] within a dedicated namespace for Spark apps
– our implementation adjusts CPU and memory quotas to cor-
respond with a maximum number of executors. When the
quota is lowered, existing pods are not preempted, but new
pods are not scheduled until usage falls below the quota. We
implemented PCAPS as a pluggable scheduling service that
coordinates between Spark and Kubernetes. The service in-
cludes inference for Decima [48]. PCAPS gets carbon intensity
from an API and collects context about the cluster and job
states from Kubernetes and Spark.

While CAP can be implemented without modifications to
Spark or Kubernetes, we made two key changes for PCAPS.
First, we implemented a Kubernetes scheduler plugin [12]
that communicates with PCAPS to determine which application
should receive available resources. This builds on source code
APIs exposed by the default kube-scheduler and requires
building/configuring a custom scheduler pod. We restrict the
scope of our plugin to a dedicated namespace for Spark apps.
Next, we made changes to Spark [67] such that each appli-
cation communicates with PCAPS before choosing the next
stage for execution – Spark provides scripts to build a pod
Docker image [50] based on a custom build.
Setting level of parallelism. In a Spark DAG, each stage
(i.e., node) includes multiple tasks that are parallelizable over
multiple executors. Setting a parallelism limit (number of
executors working on a stage) is a key component of Spark
scheduling (e.g., see [48, Section 5.2]). More executors are
not necessarily better: assigning many executors to a stage
that does not benefit from parallelism blocks them from work-
ing on other jobs in the queue. For carbon-aware scheduling,
we enable PCAPS and CAP to set new parallelism limits for
the current job each time a stage is scheduled, and particu-
larly to set lower limits during high-carbon periods (e.g., see
conditions i) and ii), Section 3).

In PCAPS, if a stage is deferred, it idles (see Alg. 1) the
newly freed executors that prompted a scheduling event.
Otherwise, the stage’s parallelism limit is set to P′ := ⌈P ·
min{exp(γ(L− ct)),(1− γ)}⌉, where P is the limit chosen
by Decima. This mirrors the exponential trade-off in PCAPS’s
design – e.g., when the current carbon ct is close to L the limit
is set to ⌈(1− γ)P⌉, and as ct grows, the limit decreases expo-
nentially to 1. For CAP, given that the underlying scheduler
specifies a parallelism limit P, CAP first attempts to schedule
a stage with P′ = ⌈P · r(t)/K⌉, where r(t)/K is the ratio of the re-
source quota vs. the total number of executors. If the number
of available executors is less than P′, the current stage takes
all of the remaining available executors.

5.2 Spark simulator environment

Mao et al. [48] developed a simulator that is a faithful rep-

7

Table 1: Summary of carbon intensity trace characteristics, in-
cluding the duration, granularity, minimum, maximum, mean,
and coefficient of variation (higher value implies more varia-
tion) for carbon intensities.

Avg. Carbon Intensity
(in gCO2eq./kWh) [18]Grid

Code Duration Min. Max. Mean Coeff. Var.
PJM 293 567 425 0.110
CAISO 83 451 274 0.309
ON 12 179 50 0.654
DE 130 765 440 0.280
NSW 267 817 647 0.143
ZA

01/01/2020-
12/31/2022
Hourly
granularity
26,304
data points 586 785 713 0.046

resentation of Spark’s standalone mode (i.e., where Spark is
the cluster manager), achieving an error (i.e., in run times) of
within 5% [48, Fig. 18]. This simulator captures all first-order
effects of Spark execution (e.g., delays in executor movement,
parallelism overheads) – it has since seen wide use in Spark
contexts [3, 23, 29, 40, 49, 56]. We implement PCAPS and CAP
as extensions to this simulator, which provides fast evaluation
and flexibility. We make the following modifications:
▶ Carbon accounting: Each job’s carbon footprint is mea-
sured ex post facto to avoid impacting simulator fidelity. Once
an experiment is complete, existing computations (e.g., execu-
tor times) and a carbon trace are used to tally the footprint.
▶ CAP: We implement CAP as a wrapper over three carbon-
agnostic schedulers in the simulator: FIFO, Decima, and
Weighted Fair (a heuristic tuned for the simulator’s test jobs).
▶ PCAPS: We implement PCAPS to interface with Decima,
which provides a probability distribution over tasks.
With these modifications, the simulator allows us to quickly
test many scenarios with a high degree of accuracy.

6 Evaluation

We evaluate our carbon-aware schedulers in a prototype clus-
ter and a realistic Spark simulator, using workloads from TPC-
H benchmarks [60] and Alibaba production DAG traces [1].
We answer the following questions:

1. How do PCAPS and CAP navigate the trade-off between
carbon emissions and job completion time?

2. How do PCAPS and CAP adapt to changes in carbon inten-
sity characteristics and workload characteristics?

6.1 Experimental setup
Carbon intensity traces. We use historical carbon traces
from six regions [18] – each trace provides hourly carbon
intensity data in grams of CO2 equivalent per kilowatt-hour
(gCO2eq./kWh). The chosen power grids represent different
energy generation mixes and thus different characteristics in

Figure 5: Time-varying carbon intensity for six grids (detailed
in Table 1) over 48 hours in January 2021.

terms of average carbon intensity and variability; we eval-
uate how these impact the behavior of PCAPS and CAP. In
Table 1 and Fig. 5, we give snapshots of each region, showing
how grid characteristics impact time-varying carbon intensity.
Larger coefficients of variation (the ratio of the standard devia-
tion to the mean) correspond to greater renewable penetration
– for instance, a large fraction of CAISO’s capacity is solar PV,
while the capacity in ZA is predominantly coal.

To better observe the behavior of our carbon-aware sched-
ulers, we follow prior work [24] and scale time in our experi-
ments such that 1 minute of real time corresponds to 1 hour
of experiment time – since carbon intensity is reported hourly,
this approximates a scenario where each job works with large
amounts of data and runs for several hours, as is becoming
common in e.g., data curation for LLMs [7, 8, 9, 44, 61].
Workload traces. For workloads, we use TPC-H bench-
marks [60] and real DAG traces from a production Alibaba
cluster [1]. We construct workloads such that the inter-arrival
times follow a Poisson distribution while specific jobs are
randomly picked from the respective traces. In the main body,
we consider an average inter-arrival time of 30 minutes (30
real-time seconds), with additional experiments measuring
the impact of this parameter in Appendix A.2.

The TPC-H queries we experiment with operate on syn-
thetic data with scales of 2 GB, 10 GB, and 50 GB – these
correspond to average real durations of 180 seconds, 386 sec-
onds, and 1,261 seconds when given a single executor. In our
prototype experiments, we also construct workloads based on
DAG information from the Alibaba trace [1]. These DAGs
exhibit a realistic power law distribution (many DAGs of short
duration, few DAGs of long duration), they have 66 nodes
on average, and an average total duration (on one executor)
of 7,989 seconds. We scale all durations by 1/60 to match
our experiment scale – this yields jobs that take 2.2 real-time
minutes to complete on average.

In the simulator, each experiment is run over a full carbon
trace (spanning three years of data). In the prototype, each
experiment is run for several trials, where each starts at a
uniformly randomly chosen time in the carbon trace, and new
carbon intensities are reported once per (real-time) minute.
In both implementations, the upper and lower bounds of U
and L correspond to the maximum and minimum forecasted
carbon intensities over a lookahead window of 48 hours.
Baselines. We compare against the following baselines:
▶ Default Spark/Kubernetes behavior (default): The

8

(a) Decima (b) PCAPS (c) CAP-FIFO (d) Carbon intensity
Figure 6: Visualizing executor usage over time for three schedulers, (a) Decima, (b) PCAPS, and (c) CAP-FIFO in a small simulator
cluster with 5 executors and 20 TPC-H jobs, over a 15 hour period in the DE grid. (d) In the executor plots, each job is a unique
shade of blue, while “idle” executors are indicated by a white background.

default behavior of Spark on Kubernetes – Spark uses first
in, first out (FIFO) to choose stages within a job, while the
Kubernetes scheduler mediates between pods of each job
during execution [21]. In the simulator’s Spark standalone
mode, this baseline implements only the FIFO scheduling.

▶ Decima: An RL scheduler for Spark that is optimized
for job completion time [48]. We use the simulator’s training
environment to train Decima for 20,000 epochs.

▶ Weighted Fair: A heuristic that assigns executors pro-
portionally to each job’s workload, with tuned weights to
improve performance on the simulated workloads [48].

▶ GreenHadoop: A MapReduce framework proposed to
leverage green energy by matching workloads with the avail-
ability of solar [24]. This framework predates Spark, so we
adapt its key ideas for DAG scheduling in the simulator – see
Appendix A.1 for implementation details.

Metrics. We use three metrics to evaluate the fidelity of our
approach in reducing carbon footprint without significantly
impacting the completion time.

▶ Carbon Footprint: We report the carbon footprint for
various scheduling policies as a percentage decrease of the
carbon-agnostic default baseline unless stated otherwise. The
values are in the range of [-100%, ∞), with negative values
indicating a carbon reduction and positive values indicating
an increase relative to the baseline.

▶ Job Completion Time (JCT): We report the average
job completion time across all the jobs in each experimental
run. We report JCT as a fraction of the average JCT for the
carbon-agnostic default baseline unless stated otherwise. The
values can be in the (0, ∞) range, with below 1 indicating a
reduction in JCT and above 1 indicating an increase in JCT.

▶ End-to-end Completion Time (ECT): We report the
total time to complete all the jobs in a given experiment as the
end-to-end completion time (ECT) as a fraction of the ECT
for carbon-agnostic default. Its values lie in the same range
as JCT. However, while JCT focuses on individual jobs, ECT
represents the system’s throughput and efficiency. Also, as
PCAPS and CAP focus on minimizing the total carbon footprint
for a set of jobs and not the instantaneous rate of carbon
consumption, ECT is a better metric for performance with
respect to time in our case.

6.2 Carbon-aware schedulers in action
Before moving to our main results, we demonstrate the carbon-
aware behavior of our schedulers in Fig. 6, which visualizes
the schedules generated by Decima, PCAPS and CAP-FIFO dur-
ing a short period in the DE grid on the simulator. PCAPS makes
fine-grained scheduling decisions, idling specific executors
during the high-carbon period (t = (5,8)) while keeping bot-
tleneck tasks running, achieving the lowest carbon footprint
of the three schedules shown. This is in contrast to CAP-FIFO,
which applies a resource quota uniformly across the cluster
without consideration of bottlenecks – note the gaps in CAP-
FIFO’s schedule that are straight vertical lines across multiple
executors. Just before t = 5, a large gap in the schedule in-
dicates that CAP-FIFO cannot run tasks because it did not
prioritize bottleneck tasks early on.

Table 2: Summary of prototype results averaged over all six
carbon traces. Each metric is normalized with respect to the
Spark / Kubernetes default. PCAPS and CAP are configured to
be moderately carbon aware.

Metric normalized
w.r.t. Default Default Decima [48] CAP PCAPS

CO2 Reduction (%) 0% 1.2% 24.7% 32.9%
Avg. ECT 1.0 0.857 1.126 1.013
Avg. JCT 1.0 0.852 1.996 1.381

6.3 Prototype experiments
Our prototype is deployed on an OpenStack cluster running
Kubernetes v1.31 and Spark v3.5.3 (both modified per Sec-
tion 5) in Chameleon Cloud [31]. Our testbed consists of
51 m1.xlarge virtual machines, each with 8 VCPUs and
16GB of RAM. One VM is designated as the control plane
node, while the remaining 50 are workers, each hosting two
executor pods. Our Spark configuration allocates 4 VCPUs
and 7GB of RAM to each of the 100 executors2. To avoid a
known issue with Spark’s dynamic allocation feature that can
cause it to hang on Kubernetes [21], we configure an upper
limit of 25 executors that can be allocated to any single job.
We implement a carbon intensity API that replays historical
traces to test our carbon-aware schedulers in the prototype.
In our prototype, we implement default and Decima as the

2Spark’s default memory overhead factor is 10%. The difference between
7GB (×2) and the 16GB RAM of each worker is to accommodate this [20].

9

Figure 7: Relative carbon footprint and end-to-end completion
times (w.r.t. the Spark/Kubernetes default) for PCAPS in the
prototype, with five different degrees of carbon-awareness (γ).
The shaded region denotes the standard deviation across 10
random trials.

Figure 8: Relative carbon footprint and end-to-end completion
times (w.r.t. the Spark/Kubernetes default) for CAP in the
prototype, with five different degrees of carbon-awareness
(B). The shaded region denotes the standard deviation across
10 random trials.

baselines. Unless stated otherwise, the results are averaged
over the batch sizes of 25, 50, and 100 jobs. Furthermore, the
results for each experimental configuration are averaged over
10 trials.

Results. Table 2 presents the results for our prototype exper-
iments. PCAPS and CAP configured to be moderately carbon-
aware (CAP is configured with B= 20 and PCAPS is configured
with γ = 0.5) achieve average carbon reductions of 32.8% and
24.6% compared to the default baseline, respectively. Com-
pared to Decima, PCAPS reduces carbon by 32.1%.

In terms of JCT, PCAPS performs significantly worse than
the default and Decima baselines; JCT increases by 38.1%
and 62% with respect to the default and Decima, respectively.
This is expected since Decima targets minimizing average
JCT. However, the key objective of PCAPS is to reduce the total
carbon footprint without increasing ECT. PCAPS increases
average ECT by only 12.4% compared to Decima and 1.3%
compared to the default. CAP also performs well and increases
average ECT by 12.6% on top of the default.
Trade-offs between carbon and job completion time. We
next test several parameter settings for PCAPS and CAP to
configure their carbon awareness in the DE grid region with
batches of 50 TPC-H or Alibaba jobs. Fig. 7 plots the
carbon-time trade-off for five settings of PCAPS relative to
the Spark/Kubernetes default. Increasing the carbon aware-
ness of PCAPS improves carbon savings at the expense of
longer ECT, with a most pronounced effect for values of γ

Figure 9: Per-job metrics for PCAPS and CAP in the proto-
type – each point represents a single trial’s average JCT and
per-job carbon footprint. Trials are normalized so that the
Spark/Kubernetes default is represented by (1,1) – this splits
the plot into quadrants, and each is annotated with the per-
centage of trials it holds (PCAPS is the top percentage, and
CAP is the bottom). Contour lines outline a Gaussian KDE for
each point cluster.

approaching 1. Conversely, Fig. 8 plots the same carbon-time
trade-off for five settings of CAP; CAP sacrifices more in ECT
(relative to PCAPS) for the same amount of carbon savings.

On a per-job level, we observe similar trends in Fig. 9,
which plots average JCT and average per-job carbon footprint
across trials of prototype experiments where PCAPS and CAP
are configured to be moderately carbon-aware. Contour lines
represent Gaussian kernel density estimators of the outcome
distribution – note that the location of each “hot spot” repre-
sents the scheduler average. Splitting the plot into quadrants,
we observe that PCAPS improves on the baseline scheduler’s
per-job carbon footprint in 95.8% of trials, corresponding to
the lower two quadrants. PCAPS improves on both carbon and
completion time in 25.7% of cases, while CAP does so in only
2.1% of cases.

Effects of carbon intensity trace characteristics. Next, we
analyze the effect of grid characteristics on the carbon-time
trade-offs of our carbon-aware schedulers using subsets of
each carbon trace (via 30 trials with 25, 50, and 100 jobs).

Fig. 10 plots the carbon reduction and average ECT of
PCAPS, CAP, and Decima. Decima is carbon-agnostic and
shows a minimal reduction in carbon that stays relatively
constant across all regions. PCAPS and CAP incorporate grid
behavior into their decisions, and we observe a positive re-
lationship between the variability of a carbon trace and the
resulting carbon reduction. For example, in ZA where car-
bon is relatively constant, high-carbon periods do not prompt
PCAPS to defer tasks since the future potential reductions are
insignificant. In contrast, high-carbon periods in the CAISO
grid correspond to nighttime scenarios on the grid, where
the prospect of daytime solar bolsters future potential reduc-
tions. These interactions are further illustrated through ECT –
grid regions with more intermittent and variable energy mixes
drive increases in ECT in exchange for more carbon reduction,
since PCAPS and CAP wait for potential reductions.

10

Figure 10: Carbon reduction (left) and ECT (right) for PCAPS,
CAP, and Decima in six grid regions. Shaded regions denote
standard deviation across 30 trials.

6.4 Simulator experiments

In the simulator, we evaluate PCAPS and CAP using TPC-
H workloads, comparing them against Weighted Fair and
GreenHadoop baselines, in addition to the Decima and de-
fault baselines from prototype experiments. We renamed the
default baseline as FIFO for simulation-based experiments
for accurate representation.
Simulator fidelity. To establish the fidelity of our simulator,
we illustrate the granular effect of differences for a batch of 50
TPC-H jobs in Appendix A.1.2. A notable difference between
the prototype and the simulator is the relative performance of
the main baseline (FIFO in the simulator, Spark/Kubernetes
default in the prototype). In short, the simulator’s FIFO sched-
uler over-assigns executors to individual jobs, blocking others
from entering service (thus increasing JCT) – this also in-
creases its relative carbon footprint compared to the default
behavior of our prototype.

Results. Table 3 presents our top-line results showing
PCAPS and CAP achieve significant reductions in carbon emis-
sions compared to the baselines. Configured to be moderately
carbon-aware, PCAPS achieves an average reduction of 23.1%
compared to Decima, and a reduction of 39.7% compared to
FIFO. CAP achieves an average carbon reduction of 22.7%
when implemented on top of FIFO, 25.1% on top of Weighted
Fair, and 14.5% on top of Decima. For 25, 50, and 100 jobs,
PCAPS increases average end-to-end completion time (ECT)
by 7.7% with respect to Decima, which is only a 4.5% degra-
dation compared to FIFO. For CAP, average ECT increases by
10.8% when implemented on top of (and compared to) FIFO,
4.0% on top of Weighted Fair, and 9.3% on top of Decima.

At a per-job level, PCAPS increases the average job comple-
tion time (JCT) by 119.57% compared to Decima. Similarly,
CAP increases average JCT by 127.4%, 86.6%, and 126.8%
when implemented with FIFO, Weighted Fair, and Decima re-
spectively. Larger increases in JCT relative to ECT happen be-
cause PCAPS allows more queue build-up during high-carbon
periods, but “makes up for lost time” in low-carbon periods.
Trade-offs between carbon and job completion time. In
the results summary, we observe positive carbon reduction in
exchange for degradation in JCT and ECT. Since PCAPS and
CAP can be configured to be more or less carbon-aware, we

Figure 11: Relative carbon footprint and end-to-end com-
pletion times (with respect to FIFO) for PCAPS in simulator
experiments, given different values of γ that correspond to
degrees of carbon-awareness. Shaded region denotes standard
deviation across carbon trace.

Figure 12: Relative carbon footprint and end-to-end comple-
tion times (with respect to FIFO) for CAP-FIFO in simulator
experiments, given different values of B that correspond to
degrees of carbon-awareness. Shaded region denotes standard
deviation across carbon trace.

explore this trade-off in the DE grid with batches of 50 jobs.
We vary hyperparameters γ (PCAPS) and B (CAP) to measure
the impact of configuration on both carbon and JCT.

In Fig. 11, we illustrate this trade-off for PCAPS compared
against FIFO. As the carbon-awareness of PCAPS increases
(indicated by the value of γ), the carbon savings of PCAPS
improve at the expense of longer ECT. This effect is most pro-
nounced for large values of γ approaching 1, because PCAPS
defers many tasks to lower carbon periods. Conversely, Fig. 12
illustrates the trade-off for CAP-FIFO, showing a similar trend
of improving carbon at the expense of longer ECT. Compared
to Fig. 11, CAP-FIFO sacrifices more in terms of ECT for the
same or lower amounts of carbon savings, and the increase in
completion time begins earlier (at lower degrees of carbon-
awareness).
Advantages of relative importance. Between PCAPS and
CAP-Decima, the carbon-agnostic scheduler is identical – thus,
performance differences can be attributed to the key ideas be-
hind PCAPS, namely relative importance (see Section 4.1). In
what follows, we examine this in detail using the DE grid
region with batches of 50 jobs. We configure PCAPS and
CAP-Decima with ten parameter settings for varying carbon-
awareness. Fig. 13 plots the result of this experiment, where
each dot denotes the outcome of one trial. We fit a cubic poly-
nomial to the outcomes of both methods to illustrate the key
trend: PCAPS exhibits a strictly better trade-off between carbon
footprint and ECT. For trials where either method achieves

11

Table 3: Summary of results for simulator experiments averaged over all 6 tested carbon traces. Each metric is normalized
with respect to the default Spark FIFO behavior. PCAPS and CAP are configured to be moderately carbon-aware, and end-to-end
completion time measures the total flow time for batches of jobs arriving continuously.

Metric (normalized with respect to FIFO) FIFO W. Fair Decima [48] GreenHadoop [24] CAP
PCAPSFIFO W. Fair Decima

Carbon Reduction (%) 0% 12.1% 21.5% 8.2% 22.7% 34.2% 31.1% 39.7%
Avg. End-to-End Completion Time 1.0 0.972 0.970 1.077 1.108 1.011 1.061 1.045
Avg. Job Completion Time 1.0 0.652 0.654 1.918 2.274 1.217 1.479 1.436

Figure 13: Relative carbon footprint vs. end-to-end com-
pletion time for PCAPS and CAP-Decima in simulator ex-
periments, given varying parameters γ ∈ [0.1,1.0] and
B ∈ {5,10, . . . ,85} that correspond to degrees of carbon-
awareness. Each dot represents an individual trial, and lines
represent a cubic polynomial of best fit.

carbon savings between 35% and 45%, PCAPS increases ECT
by an average of 7.9%, while CAP-Decima increases it by
an average of 42.7%. Conversely, for those trials where ei-
ther method increases ECT by between 0% and 10%, PCAPS
achieves average carbon savings of 35.6%, while CAP-Decima
achieves an average savings of only 20.1%.
Effects of carbon intensity trace characteristics. The
top-line results in Table 3 average over all six grid regions.
We configure both schedulers to be moderately carbon-aware
and characterize each carbon trace based on its coefficient of
variation. In Fig. 14, we plot the carbon reduction and ECT
for each of CAP-FIFO, PCAPS, and Decima. Decima’s carbon
reduction relative to the default is higher relative to that ob-
served in the prototype – this is due to differences between
Spark’s standalone FIFO scheduler and the Spark/Kubernetes
behavior of our prototype (see Appendix A.1.2). Similarly,
PCAPS’s “baseline” carbon reductions increase alongside Dec-
ima’s, and CAP gains relative ground compared to CAP-FIFO
in the simulator. We observe similar trends overall – grid re-
gions with more intermittent and variable energy mixes due
to renewables drive increases in both carbon reduction and
ECT, as observed in Fig. 10.

6.5 Takeaways

Through evaluation in a realistic simulator and a prototype
cluster, we show that a moderately carbon-aware PCAPS re-
duces carbon emissions by up to 39.7% in exchange for mod-
est increases (< 10%) in ECT for batches of 25, 50, and 100
data processing jobs. CAP configured to be moderately carbon-
aware (B = 20) is also effective, reducing carbon by up to

Figure 14: Carbon reduction (left) and increase in end-to-end
completion time (right) for CAP, PCAPS, and Decima (relative
to FIFO) in six grid regions. Shaded areas denote the standard
deviation across a carbon trace.

25.1% with respect to the scheduler it is implemented on,
in exchange for slightly larger increases in ECT. While CAP
does not take dependencies into account and is suboptimal
in terms of the carbon-time trade-off (see Fig. 13), it is eas-
ier to implement and more general than PCAPS. Intuitively,
the performance of all carbon-aware techniques exhibits a
dependence on the time-varying behavior of the power grid.
Greater carbon savings can be achieved in regions with more
renewables (thus more variability) in carbon intensity.

7 Conclusion

PCAPS demonstrates that an augmented scheduler that directly
takes both the carbon cost of computation and precedence
constraints (e.g., in the DAG of a data processing job) into con-
sideration can achieve a favorable trade-off between carbon
savings and completion time. Through experiments, we show
that PCAPS’s configurability enables a scheduling policy that
meaningfully reduces the carbon footprint of data processing
without prohibitive increases in completion time. Further-
more, our detailed analytical and experimental study of CAP
provides another avenue towards configurable carbon-aware
scheduling that is broadly applicable and easy-to-implement.

References

[1] Alibaba. Cluster data collected from production clus-
ters in alibaba for cluster management research, 2018.
URL https://github.com/alibaba/clusterdata/
tree/master/cluster-trace-v2018.

[2] The Kubernetes Authors. Resource Quotas – kuber-

12

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018

netes documentation. https://kubernetes.io/docs/
concepts/policy/resource-quotas/, 2025. [Ac-
cessed 23-01-2025].

[3] Vivek Bengre, M Reza HoseinyFarahabady, Mohammad
Pivezhandi, Albert Y Zomaya, and Ali Jannesari. A
learning-based scheduler for high volume processing
in data warehouse using graph neural networks. In
International Conference on Parallel and Distributed
Computing: Applications and Technologies, pages 175–
186. Springer, 2021.

[4] Roozbeh Bostandoost, Walid A. Hanafy, Adam Le-
chowicz, Noman Bashir, Prashant Shenoy, and Moham-
mad Hajiesmaili. Data-driven Algorithm Selection for
Carbon-Aware Scheduling. In Proceedings of the 3rd
Workshop on Sustainable Computer Systems, HotCarbon
’24, July 2024.

[5] Roozbeh Bostandoost, Adam Lechowicz, Walid A.
Hanafy, Noman Bashir, Prashant Shenoy, and Moham-
mad Hajiesmaili. LACS: Learning-Augmented Algo-
rithms for Carbon-Aware Resource Scaling with Un-
certain Demand. In Proceedings of the 15th ACM
International Conference on Future and Sustainable
Energy Systems, e-Energy ’24, page 27–45, New York,
NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400704802. doi: 10.1145/3632775.3661942.
URL https://doi.org/10.1145/3632775.3661942.

[6] Eric Brewer. Kubernetes and the path to cloud native.
Santa Clara, CA, July 2015. USENIX Association.

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot
learners, 2020. URL https://arxiv.org/abs/2005.
14165.

[8] Maximilian Böther, Dan Graur, Xiaozhe Yao, and Ana
Klimovic. Decluttering the data mess in llm train-
ing. Austin, 2024. HotInfra 2024. doi: 10.3929/
ethz-b-000717691. 2nd Workshop on Hot Topics in
System Infrastructure (HotInfra 2024); Conference Lo-
cation: Austin, TX, USA; Conference Date: November
3, 2024.

[9] Daoyuan Chen, Yilun Huang, Zhijian Ma, Hesen
Chen, Xuchen Pan, Ce Ge, Dawei Gao, Yuexiang Xie,

Zhaoyang Liu, Jinyang Gao, Yaliang Li, Bolin Ding, and
Jingren Zhou. Data-juicer: A one-stop data processing
system for large language models. In Companion of
the 2024 International Conference on Management of
Data, SIGMOD/PODS ’24, page 120–134, New York,
NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400704222. doi: 10.1145/3626246.3653385.
URL https://doi.org/10.1145/3626246.3653385.

[10] Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura.
A tutorial survey of job-shop scheduling problems using
genetic algorithms—i. representation. Computers &
industrial engineering, 30(4):983–997, 1996.

[11] Fabián A Chudak and David B Shmoys. Approximation
algorithms for precedence-constrained scheduling prob-
lems on parallel machines that run at different speeds.
Journal of Algorithms, 30(2):323–343, February 1999.
ISSN 0196-6774. doi: 10.1006/jagm.1998.0987. URL
http://dx.doi.org/10.1006/jagm.1998.0987.

[12] Kubernetes Community. Scheduler plugins, 2021.
URL https://github.com/kubernetes-sigs/
scheduler-plugins.

[13] Mohammadreza Daneshvaramoli, Helia Karisani, Adam
Lechowicz, Bo Sun, Cameron Musco, and Mohammad
Hajiesmaili. Competitive algorithms for online knap-
sack with succinct predictions, 2024. URL https:
//arxiv.org/abs/2406.18752.

[14] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss,
Jakub Tarnawski, and Yihao Zhang. Scheduling with
communication delays via lp hierarchies and clustering,
2020. URL https://arxiv.org/abs/2004.09682.

[15] Sami Davies, Janardhan Kulkarni, Thomas Rothvoss,
Jakub Tarnawski, and Yihao Zhang. Scheduling with
Communication Delays via LP Hierarchies and Cluster-
ing II: Weighted Completion Times on Related Machines,
page 2958–2977. Society for Industrial and Applied
Mathematics, January 2021. ISBN 9781611976465.
doi: 10.1137/1.9781611976465.176. URL http://dx.
doi.org/10.1137/1.9781611976465.176.

[16] Lawrence Davis. Job shop scheduling with genetic al-
gorithms. In Proceedings of the first International Con-
ference on Genetic Algorithms and their Applications,
pages 136–140. Psychology Press, 2014.

[17] Ran El-Yaniv, Amos Fiat, Richard M. Karp, and
G. Turpin. Optimal Search and One-Way Trading On-
line Algorithms. Algorithmica, 30(1):101–139, May
2001.

[18] Electricity Maps. Electricity Map. https://www.
electricitymap.org/map, Accessed September 2023.

13

https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://doi.org/10.1145/3632775.3661942
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3626246.3653385
http://dx.doi.org/10.1006/jagm.1998.0987
https://github.com/kubernetes-sigs/scheduler-plugins
https://github.com/kubernetes-sigs/scheduler-plugins
https://arxiv.org/abs/2406.18752
https://arxiv.org/abs/2406.18752
https://arxiv.org/abs/2004.09682
http://dx.doi.org/10.1137/1.9781611976465.176
http://dx.doi.org/10.1137/1.9781611976465.176
https://www.electricitymap.org/map
https://www.electricitymap.org/map

[19] Jessica Fan, Werner Rehm, Giulia Siccardo, and McK-
insey & Company. The state of internal carbon pric-
ing. https://www.mckinsey.com/capabilities/
strategy-and-corporate-finance/
our-insights/the-state-of-internal-carbon-pricing,
2021.

[20] The Apache Software Foundation. Configuration –
Spark Documentation. https://spark.apache.org/
docs/3.5.3/configuration.html, 2024. [Accessed
12-12-2024].

[21] The Apache Software Foundation. Running
Spark on Kubernetes – Spark Documenta-
tion. https://spark.apache.org/docs/3.5.3/
running-on-kubernetes.html, 2024. [Accessed
12-12-2024].

[22] The Apache Software Foundation. Job Scheduling –
Spark Documentation. https://spark.apache.org/
docs/3.5.3/job-scheduling.html, 2024. [Accessed
12-12-2024].

[23] Arkadiy Gertsman. A faster reinforcement learning ap-
proach to efficient job scheduling in apache spark. Mas-
ter’s thesis, University of Illinois at Urbana-Champaign,
2023.

[24] Íñigo Goiri, Kien Le, Thu D. Nguyen, Jordi Guitart,
Jordi Torres, and Ricardo Bianchini. GreenHadoop:
Leveraging Green Energy in Data-Processing Frame-
works. In Proceedings of the 7th ACM European
Conference on Computer Systems, EuroSys ’12, page
57–70, New York, NY, USA, 2012. Association for
Computing Machinery. ISBN 9781450312233. doi:
10.1145/2168836.2168843. URL https://doi.org/
10.1145/2168836.2168843.

[25] R. L. Graham. Bounds for certain multiprocessing
anomalies. The Bell System Technical Journal, 45
(9):1563–1581, 1966. doi: 10.1002/j.1538-7305.1966.
tb01709.x.

[26] Nathan Grinsztajn, Olivier Beaumont, Emmanuel Jean-
not, and Philippe Preux. Geometric deep reinforce-
ment learning for dynamic dag scheduling. In 2020
IEEE Symposium Series on Computational Intelligence
(SSCI), page 258–265. IEEE, December 2020. doi:
10.1109/ssci47803.2020.9308278. URL http://dx.
doi.org/10.1109/SSCI47803.2020.9308278.

[27] Walid A. Hanafy, Roozbeh Bostandoost, Noman Bashir,
David Irwin, Mohammad Hajiesmaili, and Prashant
Shenoy. The War of the Efficiencies: Understanding
the Tension between Carbon and Energy Optimization.
In Proc. of the 2nd Workshop on Sustainable Computer
Systems. ACM, Jul 2023.

[28] Walid A. Hanafy, Qianlin Liang, Noman Bashir, David
Irwin, and Prashant Shenoy. CarbonScaler: Leverag-
ing Cloud Workload Elasticity for Optimizing Carbon-
Efficiency. Proc. of the ACM on Measurement and
Analysis of Computing Systems, 7(3), Dec 2023.

[29] Zhibo Hu, Chen Wang, Helen, Paik, Yanfeng Shu, and
Liming Zhu. Learning interpretable scheduling al-
gorithms for data processing clusters, 2024. URL
https://arxiv.org/abs/2405.19131.

[30] Muhammed Tawfiqul Islam, Shanika Karunasekera, and
Rajkumar Buyya. Performance and cost-efficient spark
job scheduling based on deep reinforcement learning
in cloud computing environments. IEEE Transactions
on Parallel and Distributed Systems, 33(7):1695–1710,
2021.

[31] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau,
Paul Ruth, Dan Stanzione, Mert Cevik, Jacob Colleran,
Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and
Joe Stubbs. Lessons learned from the chameleon testbed.
In Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC ’20). USENIX Association,
July 2020.

[32] Alexandra Anna Lassota, Alexander Lindermayr, Nicole
Megow, and Jens Schlöter. Minimalistic predictions to
schedule jobs with online precedence constraints. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Bar-
bara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Confer-
ence on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 18563–18583.
PMLR, 23–29 Jul 2023. URL https://proceedings.
mlr.press/v202/lassota23a.html.

[33] Adam Lechowicz, Nicolas Christianson, Jinhang Zuo,
Noman Bashir, Mohammad Hajiesmaili, Adam Wier-
man, and Prashant Shenoy. The Online Pause and Re-
sume Problem: Optimal Algorithms and An Application
to Carbon-Aware Load Shifting. Proc. of the ACM on
Measurement and Analysis of Computing Systems, 7(3),
Dec 2023.

[34] Adam Lechowicz, Nicolas Christianson, Bo Sun, No-
man Bashir, Mohammad Hajiesmaili, Adam Wierman,
and Prashant Shenoy. Online Conversion with Switch-
ing Costs: Robust and Learning-augmented Algorithms.
In Proc. of the 2024 SIGMETRICS/Performance Joint
International Conference on Measurement and Model-
ing of Computer Systems, New York, NY, USA, June
2024. Association for Computing Machinery.

14

https://www.mckinsey.com/capabilities/strategy-and-corporate-finance/our-insights/the-state-of-internal-carbon-pricing
https://www.mckinsey.com/capabilities/strategy-and-corporate-finance/our-insights/the-state-of-internal-carbon-pricing
https://www.mckinsey.com/capabilities/strategy-and-corporate-finance/our-insights/the-state-of-internal-carbon-pricing
https://spark.apache.org/docs/3.5.3/configuration.html
https://spark.apache.org/docs/3.5.3/configuration.html
https://spark.apache.org/docs/3.5.3/running-on-kubernetes.html
https://spark.apache.org/docs/3.5.3/running-on-kubernetes.html
https://spark.apache.org/docs/3.5.3/job-scheduling.html
https://spark.apache.org/docs/3.5.3/job-scheduling.html
https://doi.org/10.1145/2168836.2168843
https://doi.org/10.1145/2168836.2168843
http://dx.doi.org/10.1109/SSCI47803.2020.9308278
http://dx.doi.org/10.1109/SSCI47803.2020.9308278
https://arxiv.org/abs/2405.19131
https://proceedings.mlr.press/v202/lassota23a.html
https://proceedings.mlr.press/v202/lassota23a.html

[35] Adam Lechowicz, Nicolas Christianson, Bo Sun, No-
man Bashir, Mohammad Hajiesmaili, Adam Wierman,
and Prashant Shenoy. Chasing Convex Functions with
Long-term Constraints. In Proceedings of the 41st Inter-
national Conference on Machine Learning, ICML’24.
JMLR, 2024.

[36] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity
of scheduling under precedence constraints. Opera-
tions Research, 26(1):22–35, 1978. ISSN 0030364X,
15265463. URL http://www.jstor.org/stable/
169889.

[37] Baolin Li, Siddharth Samsi, Vijay Gadepally, and De-
vesh Tiwari. Clover: Toward Sustainable AI with
Carbon-Aware Machine Learning Inference Service. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, SC ’23, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400701092. doi:
10.1145/3581784.3607034. URL https://doi.org/
10.1145/3581784.3607034.

[38] Hongjian Li, Liang Lu, Wenhu Shi, Gangfan Tan, and
Hao Luo. Energy-aware scheduling for spark job based
on deep reinforcement learning in cloud. Computing,
105(8):1717–1743, March 2023. ISSN 1436-5057. doi:
10.1007/s00607-023-01171-z. URL http://dx.doi.
org/10.1007/s00607-023-01171-z.

[39] Shi Li. Scheduling to minimize total weighted comple-
tion time via time-indexed linear programming relax-
ations. In 2017 IEEE 58th Annual Symposium on Foun-
dations of Computer Science (FOCS), page 283–294.
IEEE, October 2017. doi: 10.1109/focs.2017.34. URL
http://dx.doi.org/10.1109/FOCS.2017.34.

[40] Xinran Li and Zhaohao Ding. Cost efficient job
scheduling scheme for large scale data center. In
2023 IEEE/IAS Industrial and Commercial Power Sys-
tem Asia (I&CPS Asia), pages 2267–2272, 2023. doi:
10.1109/ICPSAsia58343.2023.10294452.

[41] Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli
Feng, Yinwei Wei, and Tat-Seng Chua. Data-efficient
fine-tuning for llm-based recommendation. In Pro-
ceedings of the 47th International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval, SIGIR ’24, page 365–374, New York, NY, USA,
2024. Association for Computing Machinery. ISBN
9798400704314. doi: 10.1145/3626772.3657807. URL
https://doi.org/10.1145/3626772.3657807.

[42] Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu,
Derong Xu, Feng Tian, and Yefeng Zheng. When moe
meets llms: Parameter efficient fine-tuning for multi-
task medical applications. In Proceedings of the 47th
International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’24, page
1104–1114, New York, NY, USA, 2024. Association for
Computing Machinery. ISBN 9798400704314. doi:
10.1145/3626772.3657722. URL https://doi.org/
10.1145/3626772.3657722.

[43] Wenyu Liu, Yuejun Yan, Yimeng Sun, Hongju Mao,
Ming Cheng, Peng Wang, and Zhaohao Ding. Online job
scheduling scheme for low-carbon data center operation:
An information and energy nexus perspective. Applied
Energy, 338:120918, 2023.

[44] Yiheng Liu, Hao He, Tianle Han, Xu Zhang, Mengyuan
Liu, Jiaming Tian, Yutong Zhang, Jiaqi Wang, Xiaohui
Gao, Tianyang Zhong, Yi Pan, Shaochen Xu, Zihao Wu,
Zhengliang Liu, Xin Zhang, Shu Zhang, Xintao Hu, Tuo
Zhang, Ning Qiang, Tianming Liu, and Bao Ge. Under-
standing llms: A comprehensive overview from training
to inference, 2024. URL https://arxiv.org/abs/
2401.02038.

[45] Julian Lorenz, Konstantinos Panagiotou, and Angelika
Steger. Optimal Algorithms for k-Search with Applica-
tion in Option Pricing. Algorithmica, 55(2):311–328,
August 2008.

[46] Thodoris Lykouris and Sergei Vassilvtiskii. Competitive
Caching with Machine Learned Advice. In Jennifer Dy
and Andreas Krause, editors, Proc. of the 35th Interna-
tional Conference on Machine Learning, volume 80 of
Proc. of Machine Learning Research, pages 3296–3305.
PMLR, 10–15 Jul 2018.

[47] Biswaroop Maiti, Rajmohan Rajaraman, David Stalfa,
Zoya Svitkina, and Aravindan Vijayaraghavan. Schedul-
ing precedence-constrained jobs on related machines
with communication delay, 2020. URL https://
arxiv.org/abs/2004.10776.

[48] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Alizadeh.
Learning Scheduling Algorithms for Data Processing
Clusters. In Proceedings of the ACM Special Interest
Group on Data Communication, SIGCOMM ’19, page
270–288, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450359566. doi:
10.1145/3341302.3342080. URL https://doi.org/
10.1145/3341302.3342080.

[49] Yamini Mathur. Torgraphina: A scheduler for data pro-
cessing during high-frequency job arrival using upside
down reinforcement learning. Master’s thesis, Iowa
State University, 2023.

[50] Dirk Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux journal,
2014(239):2, 2014.

15

http://www.jstor.org/stable/169889
http://www.jstor.org/stable/169889
https://doi.org/10.1145/3581784.3607034
https://doi.org/10.1145/3581784.3607034
http://dx.doi.org/10.1007/s00607-023-01171-z
http://dx.doi.org/10.1007/s00607-023-01171-z
http://dx.doi.org/10.1109/FOCS.2017.34
https://doi.org/10.1145/3626772.3657807
https://doi.org/10.1145/3626772.3657722
https://doi.org/10.1145/3626772.3657722
https://arxiv.org/abs/2401.02038
https://arxiv.org/abs/2401.02038
https://arxiv.org/abs/2004.10776
https://arxiv.org/abs/2004.10776
https://doi.org/10.1145/3341302.3342080
https://doi.org/10.1145/3341302.3342080

[51] Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. On the stability of fine-tuning {bert}:
Misconceptions, explanations, and strong baselines. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=
nzpLWnVAyah.

[52] Ferdinando Pezzella, Gianluca Morganti, and Giampiero
Ciaschetti. A genetic algorithm for the flexible job-shop
scheduling problem. Computers & operations research,
35(10):3202–3212, 2008.

[53] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Im-
proving Online Algorithms via ML Predictions. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018.

[54] Ana Radovanovic, Ross Koningstein, Ian Schneider,
Bokan Chen, Alexandre Duarte, Binz Roy, Diyue Xiao,
Maya Haridasan, Patrick Hung, Nick Care, et al. Carbon-
Aware Computing for Datacenters. IEEE Transactions
on Power Systems, 2022.

[55] Veronique Sels, Nele Gheysen, and Mario Vanhoucke. A
comparison of priority rules for the job shop scheduling
problem under different flow time-and tardiness-related
objective functions. International Journal of Production
Research, 50(15):4255–4270, 2012.

[56] Jungeun Shin, Diana Arroyo, Asser Tantawi, Chen
Wang, Alaa Youssef, and Rakesh Nagi. Cloud-native
workflow scheduling using a hybrid priority rule, dy-
namic resource allocation, and dynamic task partition.
In Proceedings of the 2024 ACM Symposium on Cloud
Computing, SoCC ’24, page 830–846, New York, NY,
USA, 2024. Association for Computing Machinery.
ISBN 9798400712869. doi: 10.1145/3698038.3698551.
URL https://doi.org/10.1145/3698038.3698551.

[57] Brad Smith and Microsoft Corporation. We’re
increasing our carbon fee as we double
down on sustainability. https://blogs.
microsoft.com/on-the-issues/2019/04/15/
were-increasing-our-carbon-fee-as-we-double-down-on-sustainability/,
2019.

[58] Yu Su, Shai Vardi, Xiaoqi Ren, and Adam Wier-
man. Communication-aware scheduling of precedence-
constrained tasks on related machines. Opera-
tions Research Letters, 51(6):709–716, 2023. ISSN
0167-6377. doi: https://doi.org/10.1016/j.orl.2023.
11.001. URL https://www.sciencedirect.com/
science/article/pii/S0167637723001815.

[59] Yu Su, Vivek Anand, Jannie Yu, Jian Tan, and Adam
Wierman. Learning-augmented energy-aware list

scheduling for precedence-constrained tasks. ACM
Trans. Model. Perform. Eval. Comput. Syst., 2024. doi:
10.1145/3680278. URL https://doi.org/10.1145/
3680278.

[60] TPC-H. The tpc-h benchmarks, 2018. URL https:
//www.tpc.org/tpch/.

[61] Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Be-
siroglu, Lennart Heim, and Marius Hobbhahn. Will we
run out of data? limits of llm scaling based on human-
generated data, 2024. URL https://arxiv.org/abs/
2211.04325.

[62] WattTime. WattTime. https://www.watttime.org,
Accessed June 2024.

[63] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Ko-
rdian Gontarska, and Lauritz Thamsen. Let’s Wait
Awhile: How Temporal Workload Shifting Can Re-
duce Carbon Emissions in the Cloud. In Proceed-
ings of the 22nd International Middleware Conference,
Middleware ’21, page 260–272, New York, NY, USA,
2021. Association for Computing Machinery. ISBN
9781450385343. doi: 10.1145/3464298.3493399. URL
https://doi.org/10.1145/3464298.3493399.

[64] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta,
Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria
Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sus-
tainable AI: Environmental Implications, Challenges
and Opportunities. Proceedings of Machine Learning
and Systems (MLSys), 4:795–813, 2022.

[65] Qing Wu, Zhiwei Wu, Yuehui Zhuang, and Yuxia Cheng.
Adaptive DAG Tasks Scheduling with Deep Reinforce-
ment Learning, page 477–490. Springer International
Publishing, 2018. ISBN 9783030050542. doi: 10.1007/
978-3-030-05054-2_37. URL http://dx.doi.org/
10.1007/978-3-030-05054-2_37.

[66] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, page 2, USA, 2012. USENIX
Association.

[67] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xiangrui
Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache spark: a unified engine for big
data processing. Commun. ACM, 59(11):56–65, October
2016. ISSN 0001-0782. doi: 10.1145/2934664. URL
https://doi.org/10.1145/2934664.

16

https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://doi.org/10.1145/3698038.3698551
https://blogs.microsoft.com/on-the-issues/2019/04/15/were-increasing-our-carbon-fee-as-we-double-down-on-sustainability/
https://blogs.microsoft.com/on-the-issues/2019/04/15/were-increasing-our-carbon-fee-as-we-double-down-on-sustainability/
https://blogs.microsoft.com/on-the-issues/2019/04/15/were-increasing-our-carbon-fee-as-we-double-down-on-sustainability/
https://www.sciencedirect.com/science/article/pii/S0167637723001815
https://www.sciencedirect.com/science/article/pii/S0167637723001815
https://doi.org/10.1145/3680278
https://doi.org/10.1145/3680278
https://www.tpc.org/tpch/
https://www.tpc.org/tpch/
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
https://www.watttime.org
https://doi.org/10.1145/3464298.3493399
http://dx.doi.org/10.1007/978-3-030-05054-2_37
http://dx.doi.org/10.1007/978-3-030-05054-2_37
https://doi.org/10.1145/2934664

[68] Yunfan Zhou, Xijun Li, Jinhong Luo, Mingxuan Yuan,
Jia Zeng, and Jianguo Yao. Learning to optimize
dag scheduling in heterogeneous environment. In
2022 23rd IEEE International Conference on Mobile
Data Management (MDM), pages 137–146, 2022. doi:
10.1109/MDM55031.2022.00040.

[69] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan
Lukose. Budget Constrained Bidding in Keyword Auc-
tions and Online Knapsack Problems. In Lecture Notes
in Computer Science, pages 566–576. Springer Berlin
Heidelberg, 2008.

17

Appendix

A Evaluation Supplements

In this section, we give additional experiment setup details and results that are deferred from the main body (i.e., in Section 6)

A.1 Deferred setup details
A.1.1 GreenHadoop [24] adaptation and implementation

This implementation begins by considering green (renewable) energy and brown (non-renewable) energy values available in the
carbon traces obtained from Electricity Maps [18]. The system derives a "green window" by iterating over future minutes and
summing the portion of executor capacity that can be powered purely by renewable energy sources until it meets the outstanding
workload. Similarly, a "brown window" is derived by computing the number of executor minutes to finish the outstanding
workload, assuming the system is run at maximum executor capacity. These two windows bracket the best-case scenarios of
optimizing purely for carbon and for time.

To balance carbon usage and JCT, the system derives a final window size via a convex combination of the green and brown
windows, modulated by a tunable parameter, θ, which details the carbon-awareness of the system. By default, θ is set to 0.5,
which balances between 0 (carbon-agnostic) and 1 (fully-carbon-aware) At each scheduling decision, the system utilizes all of
the available green energy in the future timesteps, and computes the fraction of available brown energy required to complete
all jobs by the end of our convex window. Within that determined executor limit, tasks are dispatched using a standard FIFO
queue, similar to how inter-job dependencies are managed in Hadoop. While this approach separates the carbon-aware resource
provisioning from the job ordering logic, it does not embed the carbon-importance of tasks within each job.

A.1.2 Differences between Spark standalone FIFO baseline and default Spark / Kubernetes behavior

In the main body, in Section 6.3, we discuss some notable differences between the baselines in the prototype experiments and
the simulator experiments. In the simulator experiments, we use the default Spark standalone cluster scheduler (i.e., FIFO) as a
baseline. In contrast, as the prototype is implemented on top of Spark and Kubernetes, we use the combined default behavior of
the Spark DAG scheduler and Kubernetes scheduler as a baseline.

The difference between these baselines is particularly pronounced when comparing e.g., the relative carbon footprint of
Decima against the primary baseline – in the simulator, Decima’s carbon footprint is a 21.5% improvement over FIFO, while in
the prototype Decima improves on the default behavior by only 1.2% – similar trends are evident in average job completion time.
This difference in performance can be attributed to a difference in how per-job parallelism limits are set by the FIFO scheduler
in the simulated Spark standalone environment vs. the Spark/Kubernetes behavior configured on our prototype cluster. In the
Spark standalone mode of operation, the default FIFO behavior assigns up to N executors to each stage of a job, where N is the
number of tasks within said stage. In contrast, our Spark/Kubernetes cluster scheduler is configured to assign up to 25 executors
across all stages of any job to avoid an issue where executors from previously completed stages continue to use cluster resources,
causing Spark to hang.

Figure 15: Executor usage (left) and number of jobs in the system (right) for an identical group of 50 TPC-H jobs in both the
simulator (FIFO) and prototype (Spark / Kubernetes default) clusters, both with a maximum of 100 executors.

In Fig. 15, we illustrate the granular effect of these different policies for an experiment of 50 TPC-H jobs with identical
ordering and identical interarrival times in the simulator and prototype, respectively. The left-hand side plots the number of busy
executors, while the right-hand side plots the number of jobs in the system. Note that the number of busy executors in the Spark /

18

Kubernetes prototype more frequently drops below 100, particularly when the number of jobs in the system is low (e.g., between
1000 - 1200 seconds). This corresponds to the executor cap configured for the Spark / Kubernetes default behavior, which results
in more efficient executor usage and reduced blocking (i.e., when a job enters the system, it is more likely that there will be
free executors to work on it). As a result, the Spark / Kubernetes behavior improves on the Spark standalone FIFO scheduler
by 18.8% in carbon footprint and 22.1% in average job completion time in an experiment with 50 TPC-H jobs, mirroring the
broader trends observed in our simulator and prototype experiments.

A.2 Deferred experiments
In this section, we present the results of additional experiments in the simulator and the prototype that are omitted from the main
body due to space considerations.

A.2.1 Impact of total number of jobs

In the main results presented in Section 6, we evaluate the performance of tested algorithms under experiments with 25, 50, and
100 continuously arriving jobs. We explore the impact of varying this number of jobs in each experiment below, with PCAPS and
CAP configured to be moderately carbon-aware, in the DE grid region.

Fig. 16 plots the average carbon reduction, end-to-end completion time, and average per-job completion time with respect to
FIFO for PCAPS, Decima, and CAP on top of FIFO in the simulator environment, using experiments with 12, 25, 50, 100, and
200 jobs. We find that the relative ordering of all three techniques largely stays constant, although measuring results for a small
number of jobs (e.g., 12, 25) is intuitively prone to more variance as the end-to-end results are more easily impacted by e.g., one
or two random jobs. Out of the three metrics, carbon footprint is the most stable. As the number of jobs increases, all metrics
“converge” to some average behavior. One interesting exception is CAP-FIFO – due to the “blocking” behavior of the FIFO
scheduler in the simulator that is more prone to queue build-up (e.g., see Appendix A.1.2), a larger total number of jobs results in
longer job completion times for CAP-FIFO.

(a) (b) (c)
Figure 16: (a) Carbon reduction, (b) end-to-end completion time, and (c) average job completion time achieved by PCAPS,
CAP-FIFO, and Decima (relative to FIFO) in a single grid region for varying experiment sizes. Shaded regions denote the standard
deviation across the entire carbon trace.

(a) (b) (c)
Figure 17: (a) Carbon reduction, (b) end-to-end completion time, and (c) average job completion time achieved by PCAPS, CAP,
and Decima (relative to the Spark/Kubernetes default) in a single grid region for varying experiment sizes. Shaded regions denote
the standard deviation across 10 random trials.

In Fig. 17, we plot the same metrics with respect to the default Spark/Kubernetes scheduler in the prototype implementation
for PCAPS, Decima, and CAP, using experiments with 25, 50, and 100 jobs. These results generally mirror those shown in the

19

simulator above, although CAP implemented on top of the default Spark/Kubernetes behavior does not exhibit the same increase
in per-job completion time for larger experiment sizes that CAP-FIFO does in the simulator – this is because the blocking behavior
of FIFO is more pronounced than in the default Spark/Kubernetes scheduler (e.g., see Appendix A.1.2).

A.2.2 Impacts of submission rate

In the main results presented in Section 6, we evaluate the performance of tested algorithms under continuous job arrivals
following a Poisson process with an average interarrival time of 1/λ = 30 minutes (30 seconds in real time). In what follows, we
explore the impact of varying this interarrival time below, where note that smaller interarrival times imply that the cluster is more
heavily utilized. PCAPS and CAP algorithms are both configured to be moderately carbon-aware, and the tested grid region is DE.

In Fig. 18, we plot the average carbon reduction, end-to-end completion time, and average per-job completion time with
respect to FIFO for PCAPS, Decima, and CAP-FIFO in the simulator environment. We find that the relative ordering of algorithm
performance remain largely the same, but differences arise particularly for small interarrival times – in these scenarios where the
cluster is more heavily utilized, we find that both PCAPS and Decima benefit from more intelligent scheduling decisions with
respect to FIFO, which manifests in higher carbon reductions relative to FIFO and lower end-to-end completion times.

(a) (b) (c)
Figure 18: (a) Carbon reduction, (b) end-to-end completion time, and (c) average job completion time achieved by PCAPS,
CAP-FIFO, and Decima (relative to FIFO) in a single grid region for varying Poisson interarrival times. Shaded regions denote
the standard deviation across the entire carbon trace.

In Fig. 19, we plot the same metrics with respect to the default Spark/Kubernetes scheduler in the prototype implementation
for PCAPS, Decima, and CAP. These results largely mirror those shown in the simulator above – the most notable change is the
improved performance of PCAPS and Decima (in terms of both end-to-end completion time and carbon footprint) for small
interarrival times, i.e., when the cluster is heavily utilized.

(a) (b) (c)
Figure 19: (a) Carbon reduction, (b) end-to-end completion time, and (c) average job completion time achieved by PCAPS, CAP,
and Decima (relative to the Spark/Kubernetes default) in a single grid region for varying Poisson interarrival times. Shaded
regions denote the standard deviation across 10 random trials.

A.2.3 Carbon-awareness logic latency

The logic of PCAPS and CAP naturally introduce latency due to the overhead required to make carbon-aware decisions. We
quantify this scheduling overhead for FIFO, Decima, CAP-FIFO, and PCAPS in the simulator below, in the DE grid region over
1000 simulated trials. Note that we report the latency in real-time (i.e., without the scaling mentioned in Section 6.1). These
measurements do not include the latency of e.g., calls to an external carbon intensity API.

20

In Fig. 20(a), we plot the average latency (in milliseconds) of invoking each scheduler once, given that there is exactly
{1,5,10,25,50,75,100} outstanding TPC-H jobs in the queue. We find that simple decision rule policies (FIFO and CAP-FIFO)
exhibit consistently low latencies below 5 milliseconds, where CAP adds an overhead of a few milliseconds. In contrast, Decima
and PCAPS, which both use a GNN+RL model to run inference at each invocation, intuitively exhibit latency that grows as a
function of the number of outstanding jobs. Relative to Decima, PCAPS adds an overhead of a few milliseconds at each invocation,
and this overhead is constant (i.e., it does not grow with the number of jobs in the queue).

In Fig. 20(b), we plot the average latency over a full experiment, where the initial number of jobs in the queue is one of
{1,5,10,25,50,75,100} – note that this latency goes down over time as jobs are completed. It is computed as a ratio between
the total time spent in the scheduler and the number of scheduler invocations over the experiment length. The findings in this
metric are largely similar, with lower overall averages due to the averaging over a full experiment (as opposed to averaging over
a single queue length). Overall, these results imply that the latency impact of carbon-awareness is minimal – in the context of
long-running big-data workloads, the sub-20 millisecond latencies observed are likely to be insignificant compared to other
overheads on the cluster.

(a) (b)
Figure 20: (a) Average latency with N jobs in the queue and (b) average normalized time in the scheduler for PCAPS, CAP-FIFO,
Decima, and FIFO in a single grid region for varying experiment sizes. Shaded region denotes the standard deviation across all
1000 trials.

B Deferred Analytical Results and Discussion

In this section, we give full proofs for analytical results and detailed discussion for the PCAPS and CAP scheduler designs
introduced in Section 4.

B.1 Deferred Proofs and Discussion from Section 4.1 (Precedence- and carbon-aware provisioning
and scheduling)

In this section, we discuss and prove the analytical results for the PCAPS scheduler, introduced in Section 4.1. Throughout this
section, we let PB denote a carbon-agnostic, probabilistic baseline scheduler, as outlined in Def. 4.1.

For the sake of analysis, in the following results we leverage the classic makespan bound of Graham’s list scheduling
algorithm [25], which is known to produce a schedule that is a (2− 1/K)-approximation for the optimal makespan on K identical
machines. Note that any carbon-agnostic probabilistic scheduler is an instance of list scheduling where the list (of tasks) is
random, and the next task is assigned to a machine as soon as it becomes idle.

Recall the definition of PCAPS’s carbon-awareness filter, parameterized by the Ψγ function (see Algorithm 1). Ψγ exhibits an
exponential dependence on r, the relative importance of a task. This is inspired by literature on one-way trading and related
online problems [17, 69], where such an exponential trade-off is derived by balancing the marginal reward of the current price
against the risk that better prices may arrive in the future. For DAG scheduling, we interpret relative importance in an analogous
way: tasks with high importance have a substantial negative impact if they are not scheduled, so they are almost always scheduled
at the current “price” (i.e., carbon intensity). On the other hand, tasks with low relative importance (e.g., short tasks) may not
significantly affect the DAG’s completion time if they are deferred to start later, so they can “wait” for better carbon intensities.

To analyze the carbon stretch factor of PCAPS, we define D(γ,c) ∈ [0,1], a quantity that describes the fraction of tasks (in
terms of total runtime) that are deferred by PCAPS when scheduling with a given value of γ and given carbon trace c. It is ≤ 1 for
any value of γ, and D(0,c) = 0 for any c. As γ grows and PCAPS becomes “more carbon-aware”, D(γ,c) grows in expectation.

21

B.1.1 Proof of Theorem 4.3

We are ready to prove Theorem 4.3, which states that for a given carbon intensity trace c, PCAPS’s carbon stretch factor is
1+ D(γ,c)K

2− 1
K

.

Proof. Let PBK(J) denote the schedule produced by the carbon-agnostic probabilistic baseline scheduler (e.g., Decima) using
K machines, and let PCAPSK(J) denote the schedule produced by PCAPS for the same job J with n tasks and a maximum of K
machines. We denote the carbon intensity trace by c := {c(t) : t ≥ 0}.

We henceforth use PBDK to denote the instance of PB that PCAPS interfaces with.
Consider the perspective of a single node v: suppose that PB samples node v to be scheduled at time t ≥ 0, where node v has

probability pv,t > 0 and v ∈ At . By definition of PB, as soon as a task (node) is sampled, it runs on the available machine in PB’s
schedule.

Now we consider the same node sampled by PBDK. We denote Dv as a random variable that denotes the number of times that
node v is not scheduled (i.e., deferred) when it is sampled by PBDK. It is defined as:

Dv = ∑
t∈Tv

I{c(t)> Ψγ(rv,t)},

where Tv denotes the times at which node v is sampled by PBDK. In the worst-case, observe that whenever a task v is sampled but
not scheduled, a deferral increases the total makespan by at most Xv, where Xv is the runtime of task v. Consider the edge case
where all other tasks in At (i.e., all other tasks that are ready to run at the same time as task v) are scheduled on other machines at
time t, and all further tasks (i.e., tasks that have not yet been completed but also were not in At) are successors of v (i.e., they
cannot run until v is completed).

In this case, assuming that the other tasks in At run to completion, there will be some time step t ′ > t such that At ′ = {v} – i.e.,
the only task available to run is task v. As soon as this is the case, v will run – this is because the relative importance of any task
in a set of size 1 is always 1. Thus, in the worst-case, the schedule length increases by exactly Xv – this is the case if all of the
other tasks in At finish at the same time t ′ (i.e., no overlap with v).

This gives the following makespan bound in terms of Dv:

E[PCAPSK(J)]≤ E[PBK(J)]+E

[
∑
v∈J

DvXv

]

By linearity of expectation, we have:
E[PCAPSK(J)]≤ E[PBK(J)]+ ∑

v∈J
E [Dv]Xv

Consider the total number of deferrals D = ∑v∈J Dv, and note that D must be ≤ n−1 – since at least one machine is active
at all times, the maximum number of deferrals is that which causes the schedule to drop to a single machine across the entire
time interval. This immediately implies that E[D]≤ n−1. Define a sorted list {X ′i : i ∈ n} such that X ′0 = maxv∈A Xv, . . . ,X ′n =
minv∈A Xv, and note that we can upper bound the above as follows:

E[PBK(J)]+ ∑
v∈J

E [Dv]Xv ≤ E[PBK(J)]+
E[D]

∑
i=0

X ′i ,

Note that this is a worst-case assumption – in reality, the tasks with low relative importance (that are likely to be deferred) are
unlikely to be the longest tasks for any reasonable scheduler PB. Note that ∑

n
i=0 X ′i = ∑v∈J = OPT1(J), i.e., the optimal makespan

using a single machine. To simplify the above bound, we can define a function D(γ,c) as follows:

D(γ,c) = ∑
E[D]
i=0 X ′i

OPT1(J)
.

Note that D(γ,c) ≤ 1 for any γ and any c, and D(0,c) = 0 for any c. In practice, E[D] can be estimated from e.g., historical
carbon traces and the characteristic behavior of PB (i.e., in terms of relative importance). We have the following bound:

E[PCAPSK(J)]≤ E[PBK(J)]+D(γ,c)OPT1(J).

22

This gives insight into the tuning of hyperparameter γ – for a low-carbon period c′ where a practitioner desires full throughput,
one should tune γ such that D(γ,c′)≈ 0.

Since PB follows the list scheduling paradigm of scheduling tasks in an order that respects precedence constraints, it inherits
the following worst-case theoretical bound on its makespan:

E[PBK(J)]≤
(

2− 1
K

)
OPTK(J).

From the proof of Theorem 4.5, we also have the following bound for OPT1(J):

OPT1(J)≤ K ·OPTK(J).

Combining these results, we have the following:

E[PCAPSK(J)]≤
(

2− 1
K
+D(γ,c)K

)
OPTK(J).

Combined with the bound for PB, this shows that PCAPS has a carbon stretch factor of 1+ D(γ,c)K
2− 1

K
.

We now turn to the question of carbon savings, and the result stated in Theorem 4.4. First, for ease of analysis, we define a
discretized time model that is motivated by the empirical fact that carbon intensities are reported in discrete time intervals [18, 62].
Assuming that new carbon intensity values arrive at integers in continuous time, we define a discretized carbon signal for any
discrete time step t as ct := c(t ′) : t ′ ∈ [t, t +1), where note that c(t ′) does not change on the interval t ∈ [t, t +1).

Slightly abusing notation, we let CPCAPS(t) denote the carbon emissions of PCAPS’s schedule during discrete time step t, and let
CPB(t) denote the carbon emissions of PB at discrete time step t, respectively. The schedules generated by PCAPS and PB each use
a certain number of machines during any discrete time interval – to capture this, we let EPCAPS

t : t ′ ∈ [t, t +1) denote the number
of active machines during discrete time step t in PCAPS’s schedule, and EPB

t ≤ K denotes the same for PB’s schedule. In what
follows, we use W as shorthand to denote the excess work that PCAPS must “make up” with respect to PB’s schedule (i.e., due to
deferral actions). Formally, W = ∑

T
i=0 max{EPB

t −EPCAPS
t , 0}.

B.1.2 Proof of Theorem 4.4

In what follows, we prove Theorem 4.4, which states that for a given carbon intensity trace c, PCAPS yields carbon savings of
W

(
s(0,T)− − s(0,T)+ − c(T,T

′)
)

compared to a carbon-agnostic baseline PB.

Proof. We let Cs(t) denote the carbon savings of PCAPS at discrete time step t. Formally, we have:

Cs(t) =

{
CPB(t)−CPCAPS(t) 1≤ t ≤ T,
−CPCAPS(t) T < t ≤ T ′.

By definition, we have the following by substituting for the carbon emissions of PB and PCAPS:

Cs(t) =

{
EPB

t ct −EPCAPS
t ct 1≤ t ≤ T,

−EPCAPS
t ct T < t ≤ T ′.

Summing over all time steps, we have that the carbon savings is given by:

T ′

∑
i=0

Cs(i) =
T

∑
i=0

(EPB
i −EPCAPS

i)ci−
T ′

∑
i=T+1

EPCAPS
i ci

Note that because of PCAPS’s job-specific decisions, it is not necessarily the case that EPB
t ≥ EPCAPS

t for any t ≤ T – namely, if
PB’s schedule is constrained by a bottleneck task during a low-carbon time step, PCAPS’s schedule may use that low-carbon time
step to schedule deferred tasks from previous time steps.

23

Thus, to begin simplifying this expression, we consider two cases for the sum from 0 to T as follows:

T ′

∑
i=0

Cs(i) =
T

∑
i=0

(EPB
i −EPCAPS

i)ciI(EPB
i ≥ EPCAPS

i),

−
T

∑
i=0

(EPCAPS
i −EPB

i)ciI(EPB
i < EPCAPS

i)−
T ′

∑
i=T+1

EPCAPS
i ci.

We define three terms that capture the weighted average carbon intensity per unit of work that is deferred, opportunistically
completed, or completed later as follows. Note that ∑

T
i=0(E

PB
i −EPCAPS

i) = ∑
T ′
i=T+1 EPCAPS

i .

We let s(0,T)− denote the weighted average carbon intensity of the machine time (work) that is deferred in PCAPS’s schedule
(i.e., carbon saved due to PCAPS’s carbon-aware filtering):

s(0,T) =
∑

T
i=0(E

PB
i −EPCAPS

i)ci

W
I(EPB

i ≥ EPCAPS
i)

Furthermore, we let s(0,T)+ denote the weighted average carbon intensity of the machine time (work) that is opportunistically
completed in PCAPS’s schedule (i.e., when PCAPS does more work than PB, likely during a low-carbon period):

s(0,T)+ =
∑

T
i=0(E

PB
i −EPCAPS

i)ci

W
I(EPB

i < EPCAPS
i)

Finally, we let c(T,T
′) denote the weighted average carbon intensity of the work completed by PCAPS after time T :

c(T,T
′) =

∑
T ′
i=T+1 EPCAPS

i ci

W
Under the above definitions, we can pose the total carbon savings as:

T ′

∑
i=0

Cs(i) =W
(

s(0,T)− − s(0,T)+ − c(T,T
′)
)

We note that an adversary could construct instances such that PCAPS uses more carbon than a carbon-agnostic baseline – for
instance, consider the case where the carbon intensity at each time step is strictly increasing over time. In such a scenario, the
“carbon-optimal” solution simply finishes the job as soon as it can, and such a scenario implies that c(T,T

′)+ s(0,T)+ > s(0,T)− ,
meaning that PCAPS’s carbon savings are negative. However, we note such scenarios for the carbon intensity on the grid are
unrealistic. In reality, grid carbon intensity exhibits diurnal (i.e., daily) patterns that mediate this effect – see Fig. 5 for an
example.

The above result contextualizes the total carbon savings achieved by PCAPS for a single job, but we also consider the average
carbon savings at each (discrete) carbon intensity interval as follows.

Let ρPCAPS(c) denote the average machine utilization for PCAPS’s schedule conditioned on the fact that the current carbon
intensity is c = ct . Denoting the set of discrete time steps with carbon intensity c by Tc, we have the following: ρPCAPS(c) =

limT→∞

∑i∈Tc
EPCAPSi /K

|Tc| . Note that ρPCAPS(c) can be estimated based on e.g., the observed relative importances of tasks produced
by PB – this distribution of relative importances maps (via Ψγ) into a distribution of carbon intensity values – the fraction of
these values that lie below c is proportional to ρPCAPS(c), since the fraction of values above c correspond to tasks that would be
deferred by PCAPS.

Corollary B.1. In a setting where there are always jobs with outstanding tasks in the data processing queue, the average carbon
savings of PCAPS at any given discrete time step t is given by (ρPBK−ρPCAPS(ct)K)ct .

Proof. In this setting, the expression of the average carbon savings at any given discrete time step simplifies as follows:

Let ρPB denote the average machine utilization of PB’s schedule, i.e., ρPB = limT→∞
∑

T
i=0 EPBi /K

T .
Then by Theorem 4.4, the average carbon savings Cs at any time step t is given by the following:

Cs(t) = (ρPBK−ρPCAPS(ct)K)ct .

24

B.2 Deferred Proofs and Discussion from Section 4.2 (Carbon-aware provisioning (CAP))
In this section, we discuss and prove the analytical results for CAP, introduced in Section 4.2. Throughout this section, we let AG
denote a carbon-agnostic baseline scheduler.

For the sake of analysis, in the following results we leverage the classic makespan bound of Graham’s list scheduling
algorithm [25], which is known to produce a schedule that is a (2− 1/K)-approximation for the optimal makespan on K identical
machines. Note that FIFO is an instance of list scheduling where the list (of tasks) is a FIFO queue, and the next task is assigned
to a machine as soon as it becomes idle.

Suppose that for a job J , CAP’s schedule completes it at time T ′ ≥ 0. Note that if c(t) = L for all time steps, the schedule of
CAP is identical to that of AG because CAP always sets r(t) = K. Otherwise, we let OPTK(J) denote the optimal makespan on K
machines, and let M (B,c) denote the minimum resource cap specified by CAP at any point in its schedule (note this depends on
the carbon signal c). Formally, we let: M (B,c) = argmaxi∈[K] Φi : Φi ≤ c(t) ∀t ∈ [0,T ′].

B.2.1 Proof of Theorem 4.5

We are now ready to prove Theorem 4.5, which states that CAP’s carbon stretch factor is
(

K
M (B,c)

)2 2M (B,c)−1
2K−1 . We prove the

statement by first showing that CAP’s makespan is at most
(

2K
M (B,c) −

K
M (B,c)2

)
OPTK(J).

Proof. Let CAPK(J |M (B,c)) denote the makespan of CAP given K machines conditioned on the value of M (B,c), and let
AGK(J) denote the makespan of AG (i.e., Graham’s list scheduling with K machines).

First, note that the following holds by [25]:

AGK(J)≤
(

2− 1
K

)
OPTK(J).

Second, note that the makespan of CAPK(J |M (B,c)) is upper-bounded by that of AGM (B,c)(J). By definition of M (B,c), CAP
always has M (B,c) machines available, which is the same as AGM (B,c)(J). If any other machines become available and process
jobs during the schedule of CAPK(J |M (B,c)), these strictly help the makespan with respect to AGM (B,c)(J). Thus, we have:

CAPK(J |M (B,c))≤ AGM (B,c)(J)

Furthermore, we have the following relationship between the optimal makespans (for the same job) when given different
amounts of machines. Letting M (B,c)≤ K, we have that:

OPTM (B,c)(J)≤
K

M (B,c)
OPTK(J).

To observe this, consider the limiting case as M (B,c)→ 1. When M (B,c) = 1, the optimal makespan contains no “gaps”,
in the sense that the single machine is always being utilized. If the job is perfectly parallelizable and subdividable, we have
that OPTM (B,c)(J) = K

M (B,c)OPTK(J) by a geometric proof (i.e., OPTK(J) has a makespan that is 1/K as long as OPT1(J)). For any
other job, as the number of machines increases, the utilization of machines worsens.

We give a visual example of such a job J with N = 10 tasks in Fig. 21 – observe that respecting the precedence constraints
in the case with K = 3 machines necessarily forces a makespan that is greater than the hypothetical best makespan if jobs are
perfectly parallelizable and subdividable. Thus, we have that scaling OPTK(J) by K

M (B,c) is always an upper bound on the optimal
makespan OPTM (B,c)(J).

Combining the above bounds, we obtain the following:

CAPK(J |M (B,c))≤ AGM (B,c)(J),

≤
(

2− 1
M (B,c)

)
OPTM (B,c)(J),

≤
(

2K
M (B,c)

− K
M (B,c)2

)
OPTK(J).

This gives that the carbon stretch factor (Definition 3.1) of CAP is given by
(

K
M (B,c)

)2 2M (B,c)−1
2K−1 .

25

Figure 21: An example to contextualize how the optimal makespan differs when a job is given different amounts of machines. In
the case of a single machine (i.e., OPT1(J)), the precedence constraints defined by the DAG on the right-hand side of the figure
are non-binding – there is always one or more tasks that are ready to execute. As the number of machines increases, situations
arise where some machines must be idle (e.g., in OPT3(J)), indicated by “blank slots” in the optimal schedule. The relation
between makespans is then formalized by considering a hypothetical schedule (in brackets) that ignores precedence constraints
and subdivides individual tasks across machines – while this is an infeasible schedule, it forms a lower bound on the makespan
of any feasible one.

We now turn to the question of carbon savings, and the result stated in Theorem 4.6. For ease of analysis, we again consider a
discretized time model as defined in Appendix B.1.2.

Slightly abusing notation, we let CCAP(t) denote the carbon emissions of CAP’s schedule during discrete time step t, and let
CAG(t) denote the carbon emissions of AG at discrete time step t, respectively. Schedules generated by CAP and AG each use a
certain number of machines during any discrete time interval – to capture this, we let ECAP

t ≤ r(t ′) : t ′ ∈ [t, t + 1) denote the
number of active machines during discrete time step t in CAP’s schedule. Note that r(t ′) is constant on the interval t ∈ [t, t +1),
and that ECAP

t need not be an integer – i.e., if a machine is active for only half of the discrete time interval, that machine contributes
fractionally to ECAP

t . We let EAG
t ≤ K denote the same quantity for AG’s schedule.

On a per-job basis, let T denote the makespan of AG (i.e., T = AGK(J)), where note that T ≤ T ′. In what follows, we
use W as shorthand to denote the excess work that CAP must complete after time T (i.e., after AG has completed). Formally,
W = ∑

T
i=0 EAG

t −ECAP
t . We also define quantities s(0,T) and c(T,T

′), which are weighted averages based on a combination of the
carbon intensity and schedules of AG and CAP, respectively. These can be interpreted as the realization of carbon intensities that
CAP “waited for” – in other words, it deferred some work in between time 0 and time T (saving s(0,T) amount of carbon), so it
must make up the difference after time T .

B.2.2 Proof of Theorem 4.6

We are ready prove Theorem 4.5, which states that CAP yields carbon savings compared to a carbon-agnostic baseline of
W

(
s(0,T)− c(T,T

′)
)

.

Proof. Slightly abusing notation, we let Cs(t) denote the carbon savings of CAP at discrete time step t. Formally, we have:

Cs(t) =

{
CAG(t)−CCAP(t) 1≤ t ≤ T,
−CCAP(t) T < t ≤ T ′.

By definition, we have the following by substituting for the carbon emissions of ECA and CAP:

Cs(t) =

{
EAG

t ct −ECAP
t ct 1≤ t ≤ T,

−ECAP
t ct T < t ≤ T ′.

Summing over all time steps, we have that the carbon savings is given by:

T ′

∑
i=0

Cs(i) =
T

∑
i=0

(EAG
i −ECAP

i)ci−
T ′

∑
i=T+1

ECAP
i ci

To simplify this expression, we define two terms that capture the weighted average carbon intensity per unit of work com-
pleted/deferred. First, note that ∑

T
i=0(E

AG
i −ECAP

i) = ∑
T ′
i=T+1 ECAP

i =W .

26

Formally, we let s(0,T) denote the weighted average carbon intensity of the deferred work W that is completed by AG before
time T but must be completed after time T by CAP:

s(0,T) = ∑
T
i=0(E

AG
i −ECAP

i)ci/W

Similarly, we let c(T,T
′) denote the weighted average carbon intensity of the deferred work W that is completed by CAP after

time T :
c(T,T

′) = ∑
T ′
i=T+1 ECAP

i ci/W

Under the above definitions, we can pose the total carbon savings as:

T ′

∑
i=0

Cs(i) =W
(

s(0,T)− c(T,T
′)
)

The above result contextualizes the total carbon savings achieved by CAP for a single job, but we may also consider the average
carbon savings at each (discrete) carbon intensity interval as follows. We let ρAG ∈ [0,1) denote the average cluster utilization of
AG, and we let ρCAP ∈ [0,1) denote the average cluster utilization of CAP. In general, since CAP allows jobs to use less than or
equal the amount of resource that AG allows, we expect ρAG ≤ ρCAP as for the same number of jobs submitted (e.g., during a given
period), jobs will take up a greater proportion of the resources that CAP allows.

Corollary B.2. In a setting where there are always jobs with outstanding tasks in the data processing queue, the average carbon
savings of CAP at any given discrete time step t is given by (ρAGK−ρCAPrt)Φrt+B.

Proof. In a setting where there are always jobs with outstanding tasks in the data processing queue, the expression of the average
carbon savings at any given discrete time step simplifies as follows:

Let ρAG denote the average machine utilization of AG’s schedule, i.e., ρAG = limT→∞
∑

T
i=0 EAGi /K

T , and let ρCAP denote the same for

CAP’s schedule, i.e., ρCAP = limT→∞
∑

T
i=0 ECAPi /ji

T
Then the average carbon savings Cs at any time step t is given by the following, where rt := r(t ′) : t ′ ∈ [t, t +1):

Cs(t) = (ρAGK−ρCAPrt)ct ,

≥ (ρAGK−ρCAPrt)Φrt+B.

27

	Introduction
	Problem and Motivation
	Carbon-aware DAG scheduling problem
	Prior work and motivation

	Theoretical Foundations
	Design
	PCAPS
	Carbon-aware provisioning (CAP)

	Implementation
	Spark and Kubernetes integration
	Spark simulator environment

	Evaluation
	Experimental setup
	Carbon-aware schedulers in action
	Prototype experiments
	Simulator experiments
	Takeaways

	Conclusion
	Evaluation Supplements
	Deferred setup details
	GreenHadoop Goiri:2012:GreenHadoop adaptation and implementation
	Differences between Spark standalone FIFO baseline and default Spark / Kubernetes behavior

	Deferred experiments
	Impact of total number of jobs
	Impacts of submission rate
	Carbon-awareness logic latency

	Deferred Analytical Results and Discussion
	Deferred Proofs and Discussion from Section 4.1 (Precedence- and carbon-aware provisioning and scheduling)
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Deferred Proofs and Discussion from Section 4.2 (Carbon-aware provisioning (CAP))
	Proof of Theorem 4.5
	Proof of Theorem 4.6

