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The demand for computing is continuing to grow exponentially. This growth
will translate to exponential growth in computing’s energy consumption
unless improvements in its energy-efficiency can outpace increases in its
demand. Yet, after decades of research, further improving energy-efficiency
is becoming increasingly challenging, as it is already highly optimized. As
a result, at some point, increases in computing demand are likely to out-
pace increases in its energy-efficiency, potentially by a wide margin. Such
exponential growth, if left unchecked, will position computing as a substan-
tial contributor to global carbon emissions. While prominent technology
companies have recognized the problem and sought to reduce their carbon
emissions, they understandably focus on their successes, which has the po-
tential to inadvertently convey the false impression that this is now, or will
soon be, a solved problem. Such false impressions can be counterproductive
if they serve to discourage further research in this area, since, as we discuss,
eliminating computing’s, and more generally society’s, carbon emissions is
far from a solved problem. To better understand the problem’s scope, this
paper distills the fundamental trends that determine computing’s carbon
footprint and their implications for achieving sustainable computing.

CCS Concepts: • Hardware→ Impact on the environment; • Applied
computing → Enterprise computing infrastructures.

Additional Key Words and Phrases: sustainable computing, data centers,
energy efficiency, carbon efficiency, carbon footprint.

1 INTRODUCTION
The demand for computing is growing exponentially, and has been
for some time [10], mostly because society continues to find useful
applications for it. These applications have transformed modern
society over the past fifty years, and now largely serve as the founda-
tion of its information-based economy. Since computation is simply
a processed form of energy, and energy use incurs both a mone-
tary and environmental cost, there has long been a concern that
exponentially growing computing demand would translate into
exponentially growing energy demand, which could stifle techno-
logical innovation and damage the environment. For example, as
early as 2007, the U.S. Environmental Protection Agency (EPA) sent
a report to Congress projecting a doubling in aggregate data center
energy consumption if historical trends continued [8]. While follow-
up analyses in 2011 [25] and 2016 [38] suggested the 2007 forecast
was inaccurate (with data center energy consumption increasing
by only 24% from 2005-2010 and 4% from 2010-2014), more recent
studies have come to widely different estimates of the growth in data
center energy consumption [4–6, 14, 20, 37]. The most optimistic of
these analyses estimates only a 6% increase in data center energy
consumption from 2010-2018, or roughly an average 0.65% increase
per year, despite a 6× increase in capacity [31].

Ultimately, computing’s aggregate energy consumption 𝐸 (𝑡) (in
kWh) within some time interval is simply a function (shown below)
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of its demand 𝑑 (𝑡) (in cycles) over that interval over its energy-
efficiency 𝑒 (in cycles/kWh). We assume demand does not change
within each time interval, but may change across time intervals

𝐸 (𝑡) = 𝑑 (𝑡)
𝑒

(1)

Likewise, the growth rate 𝑟𝐸 in computing’s energy consumption
is simply a function of the growth rate in its demand (𝑟𝑑 ) versus
its energy-efficiency (𝑟𝑒 ): if demand increases faster than energy-
efficiency, i.e., 𝑟𝑑 > 𝑟𝑒 , then consumption will grow exponentially,
and otherwise, it will shrink.
The optimistic analysis above attributes the small increase in

computing’s energy consumption to the incredible increase in com-
puting’s energy-efficiency over the past 15 years. This trend largely
derives from computing’s ongoing transition from smaller tradi-
tional data centers to “hyperscale” cloud platforms, which have a
strong financial incentive to optimize energy-efficiency to reduce
costs. Indeed, the reported Power Usage Effectiveness (PUE) for
Google’s data centers—the ratio of their total energy to the energy
of IT equipment—is now ∼1.1 [24], which is near the optimal value
of 1 and also nearly 30% lower than the industry average of ∼1.57 [7].
However, while the trends above have been broadly characterized
as a tremendous success story for industry, which they undoubtedly
are, they also belie a significant problem. Specifically, despite in-
credible improvements in computing’s energy-efficiency over the past
15 years, by even the most optimistic analysis, its aggregate energy
consumption still increased! That is, 𝑟𝑑 > 𝑟𝑒 over this period.

Unfortunately, after decades of research, further improving energy-
efficiency is becoming increasingly challenging, as it is already
highly optimized. Thus, moving forward, increases in computing’s
energy-efficiency are likely to slow, especially once its transition to
the cloud is complete. At the same time, demand is likely to continue
increasing, if not accelerate, as new useful applications are devel-
oped. For example, recent progress in AI has the potential to enable
a wide range of novel applications that are also computationally-
intensive [32]. Importantly, these trends will not only have profound
implications on computing’s cost, but also its carbon emissions. Ex-
ponentially growing demand that is not offset by energy-efficiency
improvements, would quickly position computing as a substantial
contributor to global carbon emissions. Yet, at the same time, there
is now a broad consensus that society must rapidly reduce its carbon
emissions to halt climate change, which represents an existential
threat to the earth’s ecosystem and humanity.
Similar to the relationship above, computing’s carbon footprint

𝐶 (in g·CO2) is simply a function of its aggregate energy consump-
tion 𝐸 (𝑡) from Equation 1 versus its energy’s carbon-efficiency 𝑐 (𝑡)
(in kWh/g·CO2). As with demand, energy’s carbon-efficiency 𝑐 (𝑡)
changes over time. Since demand, aggregate energy, and energy’s
carbon-efficiency change over time, we integrate over time to com-
pute computing’s aggregate carbon footprint.

𝐶 =
∫
𝑡

𝐸 (𝑡)
𝑐 (𝑡) 𝑑𝑡 =

∫
𝑡

𝑑 (𝑡)
𝑐 (𝑡) × 𝑒

𝑑𝑡 (2)
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Likewise, the growth rate 𝑟𝐶 in computing’s carbon footprint
is simply a function of the growth rate in its aggregate energy
consumption (𝑟𝐸 ) versus its energy’s carbon-efficiency (𝑟𝑐 ): if con-
sumption increases faster than carbon-efficiency, i.e., 𝑟𝐸 > 𝑟𝑐 , then
it will grow exponentially, and otherwise, it will shrink. We can also
use Equation 1 to substitute 𝑑/𝑒 for 𝐸 in Equation 2. Here, 𝑐×𝑒 repre-
sents computing’s carbon-efficiency (in cycles/g·CO2), highlighting
that computing’s energy-efficiency and energy’s carbon-efficiency
are equally important in determining computing’s carbon footprint.
The most recent estimates suggest electricity’s carbon-intensity

(in g·CO2/kWh), which is the inverse of carbon-efficiency, in the
U.S. decreased 30% between 2001 and 2017, largely due to the re-
placement of coal-fired power plants with natural gas and wind
generation [21, 36]. This is equivalent to a 45.6% increase in en-
ergy’s carbon-efficiency over the same period, or equivalently a
∼2.33% increase per year. Thus, the most optimistic assessments
based on the reported averages above—a 0.65% per year increase in
energy consumption [31] and a 2.33% per year increase in energy’s
carbon-efficiency [36]—suggest that computing’s carbon footprint
decreased slightly (by ∼1.64% per year on average1) from 2010-2017,
and that this decrease was entirely due to improvements in energy’s
carbon-efficiency. In contrast, if the most optimistic assessments are
inaccurate, then, based on the same reasoning, computing’s carbon
footprint likely increased.

Of course, the macro longitudinal analyses cited above are neces-
sarily simplistic, coarse, and imprecise, and should be taken with
a grain of salt, i.e., viewed skeptically. For example, our analysis
does not take into account that electricity’s carbon-efficiency varies
widely across days, seasons, and regions, and thus it is also a func-
tion of when and where energy is consumed. That said, macro
analyses can be useful in distilling the fundamental trends that mat-
ter. In particular, irrespective of the specific numbers, Equation 2
shows that the growth of computing’s carbon footprint is based
on the relative growth in its demand, energy-efficiency, and en-
ergy’s carbon-efficiency. Thus, better understanding these relative
growth rates can provide some insight into how computing’s carbon
footprint is changing, and also how to eliminate it.

Our simple analysis also paints a slightly different, and more nu-
anced, picture of computing’s carbon footprint than recent industry
announcements [13, 33, 39, 40]. While prominent technology com-
panies have recognized the trends above and sought to reduce their
carbon emissions, they understandably focus on their successes,
which has the potential to inadvertently convey the false impression
that this is now, or will soon be, a solved problem. This paper’s title
is a reference to a well-known book that made a similar observation
about the energy industry [29]. For example, many technology com-
panies have eliminated their net carbon emissions [13, 33, 39, 40],
which they often refer to as running on “100% renewable energy.”
However, eliminating net carbon emissions is different and much
easier than eliminating direct carbon emissions. Unfortunately, such
false impressions can be counterproductive if they unintentionally
discourage further research, since, as we discuss, eliminating com-
puting’s, and more generally society’s, real carbon emissions is far

1Carbon footprint’s growth rate is (M-N)/(1+N), where M and N are the growth rates
in energy’s consumption and carbon-efficiency, respectively.

from a solved problem. To better understand the problem’s scope,
we examine relative trends in the growth of computing’s demand
and energy-efficiency, as well as its energy’s carbon-efficiency, and
their implications for achieving sustainable computing.

2 COMPUTING’S DEMAND
By all indications, the demand for computing—the total number of
cycles executed—has been growing exponentially for some time,
likely since the dawn of computing [10]. The optimistic analysis
above estimated a 6× increase in data center capacity from 2010-
2018 (or ∼22% per year) [31]. Another recent study estimated that
the capacity for the most efficient hyperscale data centers had dou-
bled over the past five years [16]. While some of this growth surely
represents existing demand transitioning from smaller traditional
data centers to cheaper cloud platforms, much of it also likely rep-
resents new demand from cloud-native applications. For example, a
recent report estimates that 75% of companies are now focusing on
developing cloud-native applications [44]. A variety of other anec-
dotal evidence suggests computing demand may be accelerating. For
example, the cycles devoted to cryptomining [11] and training state-
of-the-art machine learning (ML) models [35] are growing much
faster than Moore’s Law. Computing is also continually displacing
other activities, such as videoconferencing in lieu of traveling for
meetings. While such displacement may improve energy-efficiency,
it undoubtedly increases computing demand.

The only way to reduce computing demand (aside from not com-
puting) is to improve algorithmic efficiency by enabling computation
to do more (or the same) work using fewer cycles. To be sure, there
are numerous and substantial remaining opportunities to improve al-
gorithmic efficiency. For example, broad adoption of proof-of-stake
consensus for cryptocurrencies would effectively eliminate soaring
demand from cryptomining. Likewise, reducing the demand to train
large-scale ML models has been a focus of recent research, and
yielded some notable improvements [12, 41]. Importantly, though,
computing’s demand is not only a function of each applications’
efficiency, but also the total number of applications executed. That
is, improving the efficiency of training ML models by 10× will not
decrease demand if the number of models trained increases by 10×.
Absent resource constraints, computing’s potential applications still
seem limitless, or at least only limited by people’s imaginations.
Thus, improvements to algorithmic efficiency may be hard-pressed
to offset the growth in the sheer number of applications executed.
Finally, while industry has a strong incentive to increase algo-

rithmic efficiency to reduce their operational cost, it is bounded by
each problem’s computational complexity. Obviously, we cannot
solve computational problems without some minimal amount of
computation. Further, industry’s primary incentive is to increase
its potential profit, which is effectively unbounded and generally
correlates with increasing demand, regardless of efficiency. That
is, while improving efficiency may increase profit, it is not always
necessary or possible.
Key Point. Computing demand is increasing, and possibly acceler-
ating, as more useful applications are developed. Improvements to
algorithmic efficiency are bounded and thus unlikely to staunch this
growth over the long-term.
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3 COMPUTING’S ENERGY-EFFICIENCY
Computing’s energy-efficiency has also been increasing at an expo-
nential rate for some time, a trend referred to as Koomey’s Law [26].
Koomey estimated that computing’s energy-efficiency at peak capac-
ity has been approximately doubling every 1.57 years from the 1950s
up through 2010 (roughly in-line with Moore’s law) [26], although a
revised analysis suggested the pace slowed to every 2.6 years start-
ing in 2000 (due, in part, to the end of Dennard scaling) [27]. Since
computing platforms are often idle, the same report also estimated
that average energy-efficiency, which considers idle periods, had
continued to double every ∼1.5 years due to increases in average uti-
lization and energy-proportionality. This latter point captures some
of the energy-efficiency improvements from the transition to cloud
platforms, which leverage statistical multiplexing at massive scales
to increase average server utilization, as servers are more energy-
efficient at higher utilization. As noted earlier, hyperscale cloud
data centers have also improved their facilities’ energy-efficiency
by driving down their PUEs to within 10% of optimal [24].

The optimistic analysis from §1 estimated that the energy-efficiency
improvements above have nearly kept computing’s energy con-
sumption constant, despite its exploding demand [31]. Indeed, the
transition from highly inefficient small traditional data centers to
highly efficient hyperscale data centers has yielded dramatic in-
creases in energy-efficiency. Moreover, this transition is not yet
complete with recent estimates suggesting nearly 20% of data center
energy consumption still derives from traditional smaller, and less
efficient, facilities, so there is still room for further improvement [2].

Yet, continuing to increase computing’s energy-efficiency to keep
pace with increases in demand may prove challenging for many
reasons. Most importantly, the shift to hyperscale cloud data centers,
which has yielded much of the improvement above, is a one-time
event. Once the shift is complete, it is unclear where significant
improvements will come from. One possibility is increasing the
use of specialized hardware, which is more energy-efficient than
general-purpose platforms. For example, cryptomining andML have
employed hardware specifically tailored to their function to dra-
matically increase their energy-efficiency (and performance). How-
ever, much of computing’s demand remains general-purpose, with
specialized tasks still constituting only a small fraction of it. For
example, a recent paper estimates that only 15% of Google’s energy
consumption is due to ML [34]. More generally, improving comput-
ing’s energy-efficiency has been a significant focus of research for at
least three decades. Thus, there are likely few remaining substantial
optimization opportunities using traditional methods, which may
be one reason for the reported slowing of Koomey’s law [27].

As with algorithmic efficiency, there is also a well-known physi-
cal limit to the energy-efficiency of our current form of computing,
which is defined by Landaur’s principle [28]. Current estimates are
that if computing’s energy-efficiency were to continue to double
every ∼1.5 years, then it would reach this physical limit by 2050 [26],
although it is not yet known how close CMOS circuits can, in prac-
tice, come to this limit. While, in theory, adopting reversible com-
puting techniques can overcome Landaur’s limit by performing
computation without consuming any energy, it is a nascent, and
largely theoretical, area far from any practical application [15].

Finally, even if computing’s energy-efficiency were to continue
doubling every 1.5 years, there is no guarantee it would cause com-
puting’s energy consumption to decrease. As noted earlier, even
by the most optimistic estimates, computing’s incredible energy-
efficiency improvements have not reduced its energy consumption
thus far. Interestingly, whether increases in energy-efficiency de-
crease energy’s consumption is, in part, a function of economics.
Specifically, as computing’s energy-efficiency improves, its energy
cost generally decreases, which in-turn affects its demand. The mag-
nitude of this effect is a function of computing’s price elasticity of
demand, which dictates how much demand changes when prices
change. Jevons Paradox, which is well-known in energy economics,
occurs when demand elasticity is high enough that the increases in
energy consumption from higher demand (caused by lower costs) is
greater than the decrease in consumption from improved energy-
efficiency [3, 42]. Thus, under Jevon’s Paradox, improved energy-
efficiency actually, and paradoxically, can lead to increased energy
consumption. Even if Jevons Paradox does not occur, assessing the
effect of increases in computing’s energy-efficiency on its energy
consumption is largely an economic, not technical, question.
Of course, improving computing’s energy-efficiency is always

beneficial, as it increases productivity and economic output, i.e., en-
ables more to be done with less energy at lower cost. Thus, as with
improving algorithmic efficiency, industry has a strong financial in-
centive to improve energy-efficiency. This incentive has likely driven
the incredible energy-efficiency improvements over the past fifty
years. However, improvements in computing’s energy-efficiency do
not necessarily, and have not historically, led to reductions in its en-
ergy consumption. If Jevons Paradox occurs, improving computing’s
energy-efficiency may contribute to increasing energy consumption.
Key Point. Computing’s energy-efficiency is continuing to increase,
although its rate may be slowing. Improvements to computing’s energy-
efficiency are bounded, and do not necessarily, and have not historically,
led to reductions in computing’s energy consumption, due to faster
growth in demand both from new applications and lower costs.

4 ENERGY’S CARBON-EFFICIENCY
Unlike algorithmic- and energy-efficiency, there is no fundamen-
tal limit to energy’s carbon-efficiency, since it is possible to use
zero-carbon energy sources, such as solar, wind, geothermal, hydro-
electric, nuclear, etc. The cost for solar and wind renewable energy
sources, in particular, have also been decreasing exponentially for
some time. Swanson’s law, which captures this trend for solar en-
ergy, refers to the observation that solar photovoltaic PV module
prices have tended to drop 20% for every doubling in production
volume [43]. As a result, solar energy’s cost (in $/watt) has dropped
∼10% each year on average over the past fifty years [9]. Renewable
energy sources also have massive energy potential that could fuel
exponential growth for the foreseeable future. For example, the
amount of solar energy the earth receives each hour is more than
global annual energy consumption [19].

As mentioned in §1, energy’s carbon-efficiency has been steadily
increasing for the past 20 years, mostly due to the adoption of natu-
ral gas and wind. This trend has been independent of any efforts
by the computing industry to reduce its carbon footprint. However,
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isolating and capturing the trend the carbon-efficiency of comput-
ing’s energy is more challenging, as it depends on the strictness of
carbon accounting and attribution methods used. Carbon offsets are
the loosest, and most widely used, method of carbon accounting:
they enable “offsetting” the use of carbon-intensive grid energy with
zero-carbon renewable energy generated at another location and
time. Technology companies have led in the adoption of carbon
offsets, and many have used them to eliminate their net carbon
footprint, which is often referred to as running on 100% renewable
energy [13, 33, 39]. However, while carbon offsets are beneficial
in subsidizing renewable energy, they are only a temporary mech-
anism as society transitions to lower carbon energy, since near
zero-carbon there will not be any carbon left to offset. In addition,
the use of carbon offsets means that even net zero companies are
still responsible for a significant amount of direct carbon emissions.

To reach zero-carbon, companiesmust progressively adopt stricter
forms of carbon accounting. To this end, Google recently announced
that it aims to be “carbon free” by 2030, in part, by piloting a stricter
form of carbon offset, called Time-based Energy Attribute Certifi-
cates (TEACs), which have an hourly location-specific accounting
regime [22]. However, TEACs are still carbon offsets at a higher
temporal and spatial resolution than typical offsets, which are usu-
ally 1 year and the entire earth, respectively. That is, TEACs match
consumption of grid energy within an hour to renewable gener-
ated that hour within the same grid. Thus, while TEACs are an
improvement upon existing annualized location-agnostic carbon
offsets, they, by definition, also cannot be used to reach zero-carbon.
Of course, since the grid cannot physically isolate different energy
sources, in reality, all loads that consume grid energy share in its
carbon emissions. Thus, the strictest form of carbon accounting
attributes the grid’s carbon emissions to all its loads based on their
energy use. As a result, reducing and ultimately eliminating com-
puting’s carbon emissions will require changing its operations to
be responsive to variations in grid energy’s carbon emissions and
availability.
Thus far, we have focused on trends in operational carbon, i.e.,

carbon emissions from using grid energy. There has also been an
increasing focus on accounting for and reducing “embodied carbon,”
which represents the carbon emissions from producing a product
or service [17, 18, 46]. For example, computing’s embodied carbon
emissions are based on the carbon emissions from manufacturing
the facilities and IT equipment that host it. Importantly, one com-
pany’s embodied carbon is another company’s operational carbon.
For example, a cloud platform’s embodied carbon is, in part, a chip
manufacturer’s operational carbon. The primary purpose of account-
ing for embodied carbon is to incentivize companies in the supply
chain to reduce their operational carbon. That is, if companies made
purchasing decisions to reduce their embodied carbon, it would
incentive upstream suppliers to in-turn reduce their operational
carbon. Accounting for embodied carbon is akin to a value added
tax (VAT), as carbon emissions, similar to a VAT, are associated with
the value added at each production stage of a good or service.
Unfortunately, unlike with algorithmic- and energy-efficiency,

there are not yet strong financial incentives for companies to reduce
their operational or embodied carbon emissions, as energy prices
do not yet incorporate the cost of carbon’s negative externalities to

the environment. As a result, while energy’s carbon-efficiency has
been improving, and is unbounded, its long-term trend is unclear.
Key Point. Energy’s carbon-efficiency is increasing, although its long-
term trend is unclear due to the lack of financial incentive to improve
it. Improvements to energy’s carbon-efficiency are unbounded, as it is
possible to only use zero-carbon energy. Since there will be no carbon
offsets at zero-carbon, eliminating computing’s carbon emissions will
ultimately require eliminating the grid’s carbon emissions.

5 IMPLICATIONS FOR SUSTAINABLE COMPUTING
The trends above have important implications for sustainable com-
puting moving forward. Specifically, given the fundamental limits
to improving computing’s algorithmic- and energy-efficiency, the
only way to sustain exponential growth in its demand, while also
eliminating its carbon footprint, is to improve its energy’s carbon-
efficiency. However, the trends in energy’s carbon-efficiency are
not yet clear. In particular, the terminology above around different
forms of carbon accounting, e.g., “100% renewable energy,” “carbon-
neutral,” “carbon-free,” “zero-carbon,” ‘embodied carbon,” etc., is
complex and fully understanding it requires some non-trivial tech-
nical background on how society’s energy system works. To anyone
without such a background, which includes much of the general
public as well as many computing researchers, the use of the terms
above may inadvertently convey the false impression that comput-
ing’s carbon emissions are already at zero, or soon will be. Such
messaging is often pejoratively referred to as “greenwashing.” False
impressions of computing’s carbon footprint are a significant issue,
as they can diminish the perception of progress in decarbonizing
computing, or even discourage further research altogether.

In the end, as we discuss, the various forms of carbon accounting
and offsets are temporary measures that, by definition, will not be
applicable at zero-carbon. To reach zero-carbon, computing, and
more generally society, will have to significantly change how it
operates to directly use renewable and low-carbon energy. Of course,
the problem with renewable energy is that, while it is potentially
plentiful, cheap, and clean, it is also highly unreliable. In particular,
solar and wind vary widely and uncontrollably over time based on
the earth’s movement and weather. As a result, transitioning the
grid to operate entirely on zero-carbon energy will require either
i) significant over-provisioning within the energy system, e.g., of
batteries, solar, wind, etc., which is likely cost-prohibitive, or ii)
significant flexibility in the system’s loads.

Fortunately, compared to other loads, computing is uniquely flex-
ible with substantial performance, temporal, and spatial flexibility,
enabling it to shift the intensity, time, and location of its execution to
better align with when and where renewable and other low-carbon
energy is available. To the best of our knowledge, computing is the
only load with substantial spatial flexibility that is capable of migrat-
ing its energy consumption over long distances. In addition, com-
puting can also leverage numerous software-based fault-tolerance
techniques, e.g., checkpointing, replication, and recomputation, to
continue execution despite unexpected renewable shortages, which
may require throttling or shutting down servers. Thus, computing
has the potential to leverage its multiple dimensions of flexibility to
not only lower its direct carbon footprint, but offset variations in
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renewable energy’s availability. As a result, computing is not just
another grid load, as it can also act as an energy resource, akin to a
battery, that the grid can deploy to balance demand with a variable
supply [1]. In some sense, improving energy’s carbon-efficiency is
related to improving computing’s energy-flexibility by enabling it
to adapt to when and where low-carbon energy is available.

While many have recognized computing’s unique dimensions of
energy flexibility, there has been much less research on exercising
them to optimize energy’s carbon-efficiency compared to comput-
ing’s energy-efficiency, even though, as Equation 2 shows, carbon-
efficiency is just as important as energy-efficiency in determining
computing’s carbon footprint. One reason for the lack of research is
likely that, unlike with algorithmic- and energy-efficiency, there is
neither a direct nor strong financial incentive to improve energy’s
carbon-efficiency, although this may change as renewable energy
prices drop. That said, there is a weak, but increasing, indirect incen-
tive to track and improve energy’s carbon-efficiency both to appeal
to environmentally-conscious consumers (and employees), and as a
hedge against future changes in the energy system, such as energy
constraints due to geopolitical events, stricter carbon regulations
imposed by governments, or further significant drops in renewable
or battery prices.
Another reason for the lack of research may also be that opti-

mizing carbon-efficiency requires deeper visibility into energy’s
carbon emissions, which has historically not been available. Re-
cently, carbon information services, such as Electricity Map [30]
andWattTime [45], have emerged, and are beginning to address this
issue by tracking grid energy’s carbon emissions for different re-
gions over time, and making them available online. The data shows
that grid energy’s carbon emissions vary significantly by region and
over time. Cloud platforms have started adopting these services to
enable their users to estimate the carbon emissions of their energy
consumption, and adjust their operations to reduce emissions [23].
Ultimately, the primary implication for achieving sustainable

computing from the trends above is that research should emphasize
improvements to the carbon-efficiency of both computing’s energy
(by adapting to when and where low-carbon energy is available),
as well as the grid’s energy (by leveraging computing as an energy
resource). The former is important for reducing computing’s direct
carbon emissions, while the latter is important for reducing society’s
carbon emissions, which are related and also affect embodied carbon.
Given the lack of a strong financial incentive to improve carbon-
efficiency, academic research in this area is especially important.
Indeed, historically, an explicit purpose of academic research has
been to focus on problems that industry does not address due to
lack of a near-term financial incentive.
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