
The War of the Efficiencies: Understanding the Tension between Carbon
and Energy Optimization
WALID A. HANAFY, University of Massachusetts Amherst, USA
ROOZBEH BOSTANDOOST, University of Massachusetts Amherst, USA
NOMAN BASHIR,Massachusetts Institute of Technology, USA
DAVID IRWIN, University of Massachusetts Amherst, USA
MOHAMMAD HAJIESMAILI, University of Massachusetts Amherst, USA
PRASHANT SHENOY, University of Massachusetts Amherst, USA

Major innovations in computing have been driven by scaling up computing
infrastructure, while aggressively optimizing operating costs. The result is a
network of worldwide datacenters that consume a large amount of energy,
mostly in an energy-efficient manner. Since the electric grid powering these
datacenters provided a simple and opaque abstraction of an unlimited and
reliable power supply, the computing industry remained largely oblivious to
the carbon intensity of the electricity it uses. Much like the rest of the society,
it generally treated the carbon intensity of the electricity as constant, which
was mostly true for a fossil fuel-driven grid. As a result, the cost-driven objec-
tive of increasing energy-efficiency — by doing more work per unit of energy
— has generally been viewed as the most carbon-efficient approach. However,
as the electric grid is increasingly powered by clean energy and is exposing
its time-varying carbon intensity, the most energy-efficient operation is
no longer necessarily the most carbon-efficient operation. However, the
recent focus on exploiting the flexibility of computing’s workloads—along
temporal, spatial, and resource dimensions—to reduce carbon emissions,
comes at the cost of either performance or energy efficiency. In this paper,
we quantify the trade-offs between energy efficiency and carbon efficiency
in exploiting computing’s flexibility and show that blindly optimizing for
energy efficiency is not always the right approach.1

CCS Concepts: • Computer systems organization→ Cloud computing;
• Hardware→ Renewable energy; • Social and professional topics→
Sustainability.

Additional Key Words and Phrases: Carbon Efficiency, Energy Efficiency,
Sustainable Computing

1 INTRODUCTION
The demand for computing has experienced rapid growth and is
expected to accelerate even further. However, the increase in com-
puting demand has not resulted in a proportional increase in energy
demand so far [3]. The growth in computing’s energy consumption
has been kept in check by massive gains in algorithmic efficiency,
measured in cycles per unit of work, of its software and energy
efficiency, measured in energy consumption per cycle, of its hard-
ware [14]. However, as the algorithmic and energy efficiency gains
slow down, an increase in computing demand directly increases
the energy demand. A conservative estimate projects that the en-
ergy consumption of datacenters will increase by at least 10% per
year till 2030 [12], much higher than an estimated increase of 1.65%
per year in 2010s [30]. As society has begun to recognize the envi-
ronmental impact of our activities, reducing the carbon footprint
of this accelerating energy demand has attracted significant atten-
tion from academic researchers [15, 22, 26, 37, 40, 42] and industry
leaders [9, 31, 34].

1This work was originally published in HotCarbon’23 [21]

Fig. 1. Energy’s carbon intensity (05/15/2022 - 05/31/2022).

The carbon footprint of computing depends on the computing’s
carbon efficiency, denoted as [C, which is calculated by dividing the
computing’s energy efficiency[E, measured as work done per unit of
energy, by the energy’s carbon intensity 2 , measured as the amount
of emitted greenhouse gases (GHG) per kWh of energy. Tradition-
ally, the electric grid has been powered by fossil fuels such as coal,
and oil, which have similar carbon intensities of 1038 6.�$24@/:,ℎ
and 1106 6.�$24@/:,ℎ [2]. Furthermore, even if energy’s carbon
intensity slightly varied across space and time, it was invisible to
electricity consumers due to the simple and opaque abstraction ex-
posed by the grid. As a result, the carbon intensity of electricity
was viewed as constant, every unit of energy was the same, and a
unit improvement in computing’s energy efficiency meant a pro-
portional improvement in computing’s carbon efficiency. As the
industry aggressively optimized for computing’s energy efficiency—
driven by the need to scale while reducing operational costs—it
was only serendipitous that a cost-driven approach was also the
environmentally conscious choice.

However, the evolution of the electric grid over the last decade has
diversified the mix of energy sources used for electricity generation.
With a higher penetration of renewable energy in the electric grid
and advancements in traditional power plant technologies, such
as combined heat and power (CHP) plants, the carbon intensity of
electricity now varies widely over time and across locations [5, 39].
Figure 1 illustrates the carbon intensity of energy in 6�$24@/:,ℎ
for four locations around the globe. Sweden exhibits a very low car-
bon intensity due to its reliance on hydropower, while the Nether-
lands has a higher carbon intensity due to its fossil fuel-heavy
resource mix. Furthermore, Ontario and California experience di-
urnal changes in carbon intensity due to the increased use of solar

ACM SIGENERGY Energy Informatics Review Volume 4 Issue 3, July 2024
87

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3698365.3698379&domain=pdf&date_stamp=2024-09-30

energy. The growing penetration of renewables in the electric grid
has decreased the carbon intensity worldwide but also highlighted
the importance of considering the timing and location of energy
consumption. Computing workloads offer the flexibility to choose
when and where to execute and consume energy. However, mecha-
nisms that enable the exploitation of computing’s flexibility tend
to be energy-inefficient. Therefore, in most cases, achieving carbon
efficiency requires sacrificing energy efficiency.
From a business standpoint, it does not make financial sense to

be purposefully energy-inefficient as it costs money, especially in
the absence of penalties on carbon emissions. However, there is
a social incentive to reduce carbon footprint, and the computing
industry is responding to this problem in two ways. First, assum-
ing a time-varying carbon intensity, operators are leveraging the
performance flexibility of workloads such as delaying or relocating
workloads. Second, the industry is using various forms of carbon
credits and offsets to reduce its estimated carbon emissions. Ini-
tially, carbon credits and power purchase agreements were used
to offset carbon emissions on an annual basis. However, recently,
the industry has started using stricter forms of carbon offsets that
match the energy demand of datacenters with renewable energy
generation on the same distribution grid on an hourly basis, known
as 24/7 matching [6]. While this is a step in the right direction,
it should not be construed as running the datacenters purely on
zero-carbon energy because datacenters still rely on the electric
grid. As the electric grid still uses carbon-intensive energy sources,
no one can be fully carbon-free until the grid itself is carbon-free.
In this futuristic world, the focus can shift back toward the gains
in energy efficiency that the industry has helped achieve. In the
meanwhile, blindly focusing on energy efficiency leaves many pos-
sible carbon-specific optimizations on the table. Unfortunately, just
like the tension between alternating and direct current in the late
nineteenth century, this debate has become a war of narratives and
financial levers rather than a technical one [1, 8]. As grids world-
wide still rely on carbon-emitting energy generation sources, we
need to exploit all the flexibility of computing workloads such that
we maximize carbon efficiency while optimizing energy efficiency.

Computing workloads, depending on the application, offer flex-
ibility along multiple dimensions. They can be delayed, paused,
and resumed (temporal flexibility). They can be assigned more or
fewer resources (resource scaling). They can be scaled up or down
using Dynamic Voltage and Frequency Scaling (DVFS) (rate shifting).
Finally, they can be executed at a different geographical location
(spatial shifting). These mechanisms for exploiting flexibility could
be energy-inefficient to varying degrees and yield different amounts
of carbon savings. As energy inefficiency costs money, we need to
analyze the trade-offs between carbon efficiency and energy effi-
ciency. This can not only guide the industry in estimating the cost
of optimizing for carbon but also help regulators determine the
appropriate incentives and penalties for carbon emissions.

The management of carbon emissions in cloud datacenters is re-
ceiving significant attention due to the growing impact of climate
change [16, 17, 19, 20, 31, 32, 37, 39, 42]. While some studies have
focused on embodied carbon, which refers to carbon emissions from
the manufacturing and relocation of infrastructure, we are concen-
trating on the operational energy and carbon footprint of powering

and cooling the infrastructure. Although our efficiency metrics can
encapsulate other accounting methods, such as embodied carbon, by
spreading the embodied carbon over the actual lifespan of the infras-
tructure, we did not use that combination since it does not comply
with the GHG protocol [4] as highlighted by other researchers [13].
Nonetheless, our findings on the tradeoffs between energy efficiency
and carbon efficiency remain valid.
To the best of our knowledge, our work is the first to explicitly

quantify the energy-carbon trade-offs of various flexibility mecha-
nisms. To demonstrate this trade-off, we consider real-world carbon
traces and analytically-modeled applications and simulate the effect
of carbon-aware scheduling mechanisms. We use a state-of-the-art
energy-efficient execution as the baseline and demonstrate how
carbon efficiency can be significantly increased by being energy
inefficient, and blindly optimizing for energy efficiency is not al-
ways the right approach. We also highlight the trade-off breadth
of different techniques and show that there exists a tipping point
where carbon savings is not yet affected by the energy inefficiency
of such mechanisms. Beyond this point, the carbon footprint of
energy overheads overweighs the reduction in carbon savings from
exploiting flexibility.

2 ILLUSTRATING EFFICIENCY TRADE-OFFS
In this section, we investigate the trade-off between carbon effi-
ciency and energy efficiency of four commonly-used mechanisms
for exploiting computing’s flexibility: temporal shifting, resource
scaling, rate shifting, and spatial shifting. We choose state-of-the-
art energy-efficient execution as the baseline unless stated other-
wise. Therefore, our carbon efficiency gains come from optimizing
specifically for carbon and not from improving computing’s energy
efficiency. Furthermore, the term “carbon efficiency” refers to com-
puting’s carbon efficiency and not energy’s carbon efficiency, which
is referred to by the reciprocal term of carbon intensity.

We use a 3-year-long carbon intensity trace for Ontario, Canada,
from electricity map [7] spanning January 1, 2020, to December
31, 2022. The trace provides the hourly average intensity values,
measured in 6�$24@/:,ℎ. Unless stated otherwise, we assume that
the job starts at the hour boundary, and aggregate our results across
jobs starting at each hour of the year. We report carbon efficiency
and energy efficiency values, with the results normalized to the most
energy-efficient for energy efficiency and the least carbon-efficient
for carbon efficiency, unless otherwise specified. Furthermore, we
present our analysis across a wide range of empirically-driven con-
figurations that map to real-world server classes and application
characteristics to ensure our results are broadly applicable and not
tied to a particular application or hardware.

2.1 Temporal Shifting
The time-varying nature of electricity’s carbon intensity creates
green time periods, where the carbon intensity is significantly lower
than the average carbon intensity for that location, as shown in
Figure 1. The simplest, and most common, strategy to increase com-
puting’s carbon efficiency is to wait for such low carbon periods to
arrive, execute the job during a given period, suspend the job at the

ACM SIGENERGY Energy Informatics Review Volume 4 Issue 3, July 2024
88

24 30 36 42 48 54 60 66 72
Deadline in hours

1.0

1.1

1.2

1.3

1.4

N
or

m
. C

ar
bo

n
E

ffi
ci

en
cy

Low Medium High

24 30 36 42 48 54 60 66 72
Deadline in hours

1.0

1.1

1.2

1.3

1.4

N
or

m
. C

ar
bo

n
E

ffi
ci

en
cy

(a) Carbon Efficiency

24 30 36 42 48 54 60 66 72
Deadline in hours

0.94

0.96

0.98

1.00

N
or

m
. E

ne
rg

y
E

ffi
ci

en
cy

(b) Energy Efficiency

Fig. 2. Carbon and energy efficiency of jobs with different overheads. Longer
deadlines allow a higher use of checkpoint & restore to operate in low carbon
periods.

end of this period, and resume its operation during the next low car-
bon period. However, this intermittent execution of jobs leverages
checkpoint and restore techniques to save the state between low
carbon periods, incurring energy overhead. The amount of overhead
depends on the frequency of checkpoint and restore operations and
the energy cost of a single checkpoint and restore operation, which,
in turn, depends on the size of the state of the application [35].
Prior work on temporal shifting to reduce the carbon footprint

has focused on configuring the thresholds for identifying low carbon
periods, with or without future knowledge of carbon intensity, and
the trade-offs between carbon savings and job completion times [34,
37, 42], while ignoring the overhead of suspend-resume.There is also
a recent work that explores online algorithms, taking into account
the overhead of suspend and resume methods [26]. However, these
studies do not explicitly discuss or quantify the trade-off between
the loss of energy efficiency and gains in carbon efficiency. We
bridge this gap in an empirical study outlined next.
1. Experimental Setup. Our setup presumes multiple jobs with
different overhead percentages, aiming to optimize carbon efficiency
using state-of-the-art carbon-aware execution policies.
Applications.We consider an application that constantly performs
computation, such as ML training, and requires a certain memory
size to store the intermediate results. We assume that the job has
performance flexibility and allows the operator to checkpoint &
restore its state.We use three variants of this job represented by their
checkpoint & restore overheads, which we configure as the time it
takes to checkpoint or restore the memory state of the job. We set
the overheads for the three variants as 5 minutes (low), 10 minutes
(medium), and 15minutes (high), which can bemapped to real-world
applications by assuming ML training over different-sized models.
The job also has temporal flexibility, aka slack, which we define as
a multiple of the job’s uninterrupted execution time. For example, a
slack factor of 1.5× for a 24-hour job without interruption means
that it takes 36 hours to finish. In our experiments, we consider a
24-hour job and vary the slack factor from 1× to 3× of the job’s
runtime.
Policy. We use a deadline-aware suspend-resume policy to execute
the job that has been proposed in recent work to reduce the carbon
footprint of jobs with temporal flexibility [42]. This policy assumes
perfect future knowledge of carbon intensity and selects low carbon

1 2 3 4 5 6 7 8 9 10
Nodes(#)

0

2

4

6

8

N
or

m
. T

hr
ou

gh
pu

t

Excellent High Moderate

1 2 3 4 5 6 7 8 9 10
Nodes(#)

0

2

4

6

8

N
or

m
. T

hr
ou

gh
pu

t

(a) Throughput

1 2 3 4 5 6 7 8 9 10
Nodes(#)

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
. E

ne
rg

y
E

ffi
ci

en
cy

(b) Energy Efficiency

Fig. 3. As applications with sub-linear scaling characteristics scale, their energy
efficiency reduces.

slots for executing the job such that it finishes before the deadline.
It does not take into account the energy overhead of checkpoint
& restore when determining the number and selection of slots for
execution. However, we take into account the carbon overhead of
intermittent execution and subtract that from carbon savings when
calculating carbon efficiency gains.
2. Experimental Results.The results in Figure 2a show that a higher
degree of flexibility (higher slack) can lead to greater reductions in
carbon emissions (increased carbon efficiency). However, flexibil-
ity comes at the cost of energy efficiency. As shown in Figure 2b,
larger slacks allow applications to checkpoint & restore more often,
increasing the energy and carbon overhead, which reduces energy
efficiency. In Figure 2b, the y-axis limit is set between 1 and 0.94 to
ensure clear visibility of the lines representing normalized energy ef-
ficiency. It is important to note that the magnitude of carbon savings
and the impact on energy efficiency are application-specific, but
their relationship is fundamental and will hold across application
characteristics and carbon intensity profiles.
3. Key Takeaways. Higher temporal flexibility enables applications
to increase their carbon efficiency, but the gains depend on how often
applications incur the energy and carbon overhead of the checkpoint
and restore mechanism to take advantage of low carbon periods.

2.2 Resource Scaling
Resource scaling is the method of adding or removing resources
to a given job to speed up or slow down the speed of execution,
respectively. In the context of carbon-aware computing, resource
scaling can be used as an antidote to increasing job completion
time under suspend-resume execution [22, 37]. Instead of resuming
the job at 1× during low-carbon periods, it can be scaled up to k×
to compensate for the time spent in suspend state. However, the
effectiveness of scaling depends on the application characteristics,
such as the size of sequential barriers modeled by Amdahl’s law [11].
As a result, as the allocated resources increase, the speed up increases
sub-linearly, reducing the energy efficiency of execution.
1. Experimental Setup. In this experiment, we demonstrate the
carbon efficiency and energy efficiency trade-off for an application
that leverages resource scaling to reduce its carbon footprint. To

ACM SIGENERGY Energy Informatics Review Volume 4 Issue 3, July 2024
89

1 2 3 4 5 6 7 8 9 10
Scale Factor (×)

0.5

1.0

1.5

2.0

N
or

m
. E

ffi
ci

en
cy

Carbon Efficiency Energy Efficiency

1 2 3 4 5 6 7 8 9 10
Scale Factor (×)

0.5

1.0

1.5

2.0

N
or

m
. E

ffi
ci

en
cy

(a) Excellent

1 2 3 4 5 6 7 8 9 10
Scale Factor (×)

0.5

1.0

1.5

2.0

N
or

m
. E

ffi
ci

en
cy

(b) High

1 2 3 4 5 6 7 8 9 10
Scale Factor (×)

0.5

1.0

1.5

2.0

N
or

m
. E

ffi
ci

en
cy

(c) Moderate

Fig. 4. Normalized carbon and energy efficiency for different scalability profiles when running in Ontario, Canada.

characterize the energy overheads of scaling alone, we focus on sce-
narios where jobs must finish without increasing the job completion
time, i.e., no slack.
Applications. Since applications’ scalability dictates the energy
overhead, we consider different scalability in terms of the through-
put reduction per additional node. Figure 3 shows the scalability
characteristics for three applications with excellent scaling (5% re-
duction in normalized throughput per additional node), high scaling
(10% reduction per additional node), and moderate scaling (15% re-
duction per additional node) characteristics. This behavior is similar
to many real-world distributed applications, as shown in [22, 33]
and is considered a result of the relations between workloads’ com-
munication and computation [22]. We assume that the energy con-
sumption of each additional node is the same. As a result, as shown
in Figure 3b, the energy efficiency of the computing decreases due
to reduced normalized throughput per unit energy after scaling.
Policy. Souza et al. [37] propose a carbon-aware scaling policy called
Wait&Scale, which selects an application-specific scale factor based
on its scalability characteristics. It assumes perfect knowledge of
future carbon intensity. Similar to a carbon-aware suspend-resume
policy, it generates a schedule that suspends the job during high-
carbon periods and resumes it at the application-specific scale factor
during low-carbon periods. In this scenario, when the scale factor
is set to 1 and since job completion time is set as the job length, the
job will execute in an uninterrupted manner. As a result, jobs do
not gain carbon savings from temporal flexibility.
2. Experimental Results. Figure 4 shows the normalized carbon
efficiency and energy efficiency of the three scalable applications
with scalability characteristics shown in Figure 3. The results indi-
cate that maximizing energy efficiency does not necessarily result
in maximum carbon efficiency. Rather, the increase in carbon ef-
ficiency depends on the flexibility that comes with a decrease in
energy efficiency. Furthermore, the results in Figure 4 demonstrate
that the application’s scalability plays a significant role in carbon
efficiency gains and energy efficiency losses. For instance, the job
with excellent scaling (Figure 4a) was able to increase its carbon
efficiency by 68% at an energy efficiency loss of 15%. Conversely,
the moderately scalable job showed only a 34% increase in carbon
efficiency but paid more than a 25% loss in energy efficiency.

It is also worth noting that, in all three cases, Figure 4 illustrates
that increasing the scaling factor does not always improve carbon
efficiency. Beyond a certain scaling factor, the gain in throughput
during high carbon periods does not overcome the carbon cost
due to low energy efficiency at high scales. Hence, the reciprocal
behavior that loss of energy efficiency does not always lead to carbon
efficiency should also be considered while scaling applications.
3. Key Takeaways. Carbon-aware application of scaling policies can
yield significant gains in carbon efficiency. However, the high energy
overhead of scaling means that applications must be highly judicious
in choosing their scale factor as gains become marginal at high scales.

2.3 Rate Shifting
Dynamic Voltage and Frequency Scaling (DVFS) has been widely
used for energy optimization for servers in datacenters by leverag-
ing the non-linear relationship between power consumption and
application throughput [24, 29, 41, 44]. DVFS can also be used for
optimizing carbon efficiency where the application runs faster using
a higher frequency during low carbon periods and saves energy by
lowering the CPU frequency and its execution speed during high
carbon periods, possibly at a lower energy-efficiency. DVFS can
especially be helpful for uninterruptible applications that cannot be
suspended, as it makes progress at all times without suspension.

The energy savings in using DVFS come from the non-linear rela-
tionship between a processor’s power demand (%) and its frequency
(5) and voltage (+) governed by the following equation,

% = �5+ 2 + %static . (1)

Here,� and %static are processor architecture-specific constants.
As shown in this equation, power demand has a dynamic and a
static range. The dynamic range is dictated by the linear relation
with its frequency; reducing the operating frequency by 50% will
reduce the dynamic range by 50%. However, higher savings in the
dynamic range come from the non-linear relationship with the op-
erating voltage of the processor; decreasing the operating voltage
to half reduces the dynamic power consumption of the processor
by a factor of 4. It is worth mentioning that a decrease in the power
consumption of a processor does not lead to a proportional decrease

ACM SIGENERGY Energy Informatics Review Volume 4 Issue 3, July 2024
90

900 1100 1300 1500 1700 1900 2100
Frequency

0.5

1.0

1.5

2.0

E
ne

rg
y

E
ffi

ci
en

cy
 w

.r.
t F

m
ax

CPU-bound
IO-bound

balanced

Fig. 5. Normalized energy efficiency across different application profiles de-
fined by their IO-intensiveness.

in its performance. The decrease in performance, denoted by (, de-
pends on the CPU-boundedness of applications and can be modeled
using Amdahl’s law [11] by the following equation:

(=
1

8> + (1 − 8>)/5 ′=
. (2)

where 8> is the fraction of time an application spends accessing
Input/Output (IO) peripherals at the maximum operating frequency
(�<0G), which is one of the major reasons affecting the applica-
tion’s slowdown due to their sequential nature. 5 ′= is the normal-
ized frequency w.r.t. the highest frequency 5 ′= = 5=/�<0G , where
5= ∈ [�min, �max].
Considering only the dynamic range, by assuming %BC0C82 to be 0

and � to be 1, a 50% decrease in operating frequency for an appli-
cation with 50% IO yields only a 34% reduction in the application’s
performance, making it more efficient. While reducing frequency
alone yields a 50% power savings, more savings will be achieved if
the operating voltage is decreased as well. However, many modern
processors do not allow direct and separate control of the proces-
sor’s operating voltage. Instead, changing the operating frequency
alters the operating voltage to a pre-determined voltage level. As a
result, applications may not have a full range of parameters available
to them to optimize energy efficiency using DVFS. Furthermore, de-
pending on the practical values for %BC0C82 and � , energy efficiency
gains may be further limited.
1. Experimental Setup.We next evaluate the impact of DVFS for
different application characteristics under different operation fre-
quencies to highlight the tension between carbon and energy effi-
ciency.
Server Configurations. Figure 5 shows our modeled server, mod-
eled after a local server in our lab, that has an Intel-Xeon Processor
E5-2620 v4 with DVFS enabled. The server dynamic power range
was controlled through the frequency range of (0.9 to 2.1GHz, 0.1
MHz step), voltage range of 0.8 to 1.2V. The CPU’s transistor gate’s
capacitance (3 × 10−2), while the static power of the server is 30W,
which is approximately 25% of its operational power. In practice,
frequency levels and voltage values are tied together. Thus, we split
the voltage range into the same number of steps as frequency and
establish a direct relationship between frequency and voltage levels.
Applications.We model three different applications that map to
real-world: “CPU-bound” application such as matrix multiplication

in ML training (0% time spent on input/output), “IO-bound”appli-
cation of text processing, e.g., Hadoop (70% time spent on I/O),
and “balanced” application such as in-memory data processing, e.g.,
Spark, (40% time spent on I/O). In all of these examples, I/O time is
configured when the processor is running at the highest frequency.
The application-specific energy efficiency profile is created based
on its I/O%, under different frequencies, by equations 1 and 2.
Policy. There is no prior work on leveraging DVFS to optimize for
carbon efficiency. Therefore, we devise a simple strategy to explore
the carbon and energy efficiency trade-off. Our policy uses the
application-specific profile to operate at a high frequency, often less
energy efficient, during low carbon periods and at a low frequency,
e.g., the highest energy-efficient frequency, during high carbon
periods. The complex decision space necessitated evaluating the
policy against all frequency permutations. In this case, the policy
is given all permutations of �1, �2 ∈ [900, ..., 2100], and we also use
the mean carbon intensity `2 , during the expected execution period,
as the threshold. In this case, at a time slot 8 , the application runs at
frequency �1 if the carbon intensity 28 is less than or equal to the
threshold ` (28 ≤ `), and it runs at frequency �2 otherwise.
2. Experimental Results.We model the energy efficiency behavior
of our applications by computing the normalized energy consump-
tion at the highest frequency with respect to other frequencies.
Figure 5 shows that across application classes, I/O-bound applica-
tions observe the most gains since an I/O-heavy application does
not utilize the CPU to its full extent and is not affected by the slower
processing speed of the CPU at lower frequencies, while a CPU-
bound application barely sees any gains as its throughput is highly
affected by the processing speed. The efficiency gains from DVFS
were further in prior work [25].

Figure 6 shows the carbon and energy efficiency, of the three
applications denoted as CPU-bound (0% IO), IO-Bound (70% IO), and
balanced (40% IO). The results clearly indicate that energy-efficient
configurations do not always yield the highest carbon efficiencies.
For example, Figure 6a shows that the highest carbon efficiency is
achieved by running fast (∼1.7GHz) when energy’s carbon intensity
is low while running slow (∼1GHz) otherwise, contrarily, always
running at (∼1.3GHz) yields highest energy efficiency. Figure 6c
shows another example where energy and carbon efficiency are
more correlated as the energy and carbon efficiency increase from
lowering the frequency. We point out that other configurations
resulted in similar conclusions, but we had to leave them out due to
space constraints.
3. Key Takeaways.Using DVFS in a carbon-awaremanner can greatly
improve carbon efficiency. Adjusting the operating frequency can result
in high-efficiency gains that might bridge the gap between energy and
carbon-efficient computing.

2.4 Spatial Shifting
Migrating services across the network in order to optimize cost or
latency has been widely discussed [27, 36, 39, 43]. Similarly, migra-
tions can be utilized to increase carbon efficiency by transferring
jobs to a region where the carbon intensity of energy is lower. For
example, a task can be migrated across the globe by following the

ACM SIGENERGY Energy Informatics Review Volume 4 Issue 3, July 2024
91

900 110013001500170019002100
Frequency ≤ T

900

1100

1300

1500

1700

1900

2100

Fr
eq

ue
nc

y
>

T

1.0

1.1

1.2

1.3

C
ar

bo
n

E
ffi

ci
en

cy

900 110013001500170019002100
Frequency ≤ T

900

1100

1300

1500

1700

1900

2100

Fr
eq

ue
nc

y
>

T

0.875

0.900

0.925

0.950

0.975

1.000

E
ne

rg
y

E
ffi

ci
en

cy

(a) CPU-bound Task

900 110013001500170019002100
Frequency ≤ T

900

1100

1300

1500

1700

1900

2100

Fr
eq

ue
nc

y
>

T

1.0

1.1

1.2

1.3

1.4

C
ar

bo
n

E
ffi

ci
en

cy

900 110013001500170019002100
Frequency ≤ T

900

1100

1300

1500

1700

1900

2100

Fr
eq

ue
nc

y
>

T

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
ne

rg
y

E
ffi

ci
en

cy

(b) Balanced Task

900 110013001500170019002100
Frequency ≤ T

900

1100

1300

1500

1700

1900

2100

Fr
eq

ue
nc

y
>

T

1.0

1.2

1.4

1.6

1.8

C
ar

bo
n

E
ffi

ci
en

cy

900 110013001500170019002100
Frequency ≤ T

900

1100

1300

1500

1700

1900

2100

Fr
eq

ue
nc

y
>

T

0.6

0.7

0.8

0.9

1.0

E
ne

rg
y

E
ffi

ci
en

cy

(c) IO-bound Task

Fig. 6. Carbon and energy efficiency of different tasks.

availability of carbon-free solar energy. However, flexibly transfer-
ring jobs between locations decreases energy efficiency as it involves
energy overheads from checkpointing, transferring, and restoring
execution state as well as application data. For instance, for migrat-
ing a data processing application (e.g., ML training), the application
state must be checkpointed at the source, moved across the network,
and restarted at the destination. Also, the data must be moved or
cloned in both locations which incurs extra energy consumption.
The process of checkpointing and restoring depends on the applica-
tion size, as explained in section 2.1, while the migration depends
on the state and data size, and cloning also comes with energy and
financial cost overheads. A full analysis of spatial shifting trade-offs
is left to future work.

3 DISCUSSION
Increasing computing carbon efficiency through carbon-aware sched-
uling involves a wide range of trade-offs in terms of performance,
energy, and cost. For instance, temporal and spatial shifting often re-
quires performance reductions, either by extending the completion
time [23, 39, 42] or by utilizing distant but greener resources, which
increases the response time [17, 18, 38, 39]. Carbon-aware sched-
uling also tends to increase costs, not only through implicit cost
increases but also due to higher energy consumption from flexible
execution. For example, researchers have highlighted that carbon-
aware scheduling often introduces increases in peak, as well as acute

changes in computing and energy demand [10, 23, 28]. These trade-
offs are present in other sustainability approaches, where reducing
embodied carbon by amortizing servers means running at lower
energy efficiency compared to state-of-the-art servers [13]. Finally,
it is worth noting that despite these trade-offs, researchers have
highlighted scenarios and approaches where the benefits outweigh
the overheads [15, 23, 26, 38].

4 CONCLUSION
For a long-time, energy efficiency has been a key objective for cost-
effective and sustainable computing. The necessity to decrease com-
puting’s operating costs and the environmental impact of computing
made energy efficiency a first-class citizen in computing. However,
the wide adoption of clean energy in electrical grids, along with
increasing public awareness about energy sources, and the enabled
visibility of the time-varying carbon intensity, has resulted in a
shift where the most energy-efficient operations may no longer be
considered the most sustainable or socially acceptable choice. For
these reasons, carbon efficiency (the amount of work per unit of
carbon) appeared as a “true” sustainability metric. The key idea
in increasing carbon efficiency is to exploit computing workloads’
flexibility by adjusting execution time (Temporal Shifting), speed
(Scaling and Rate Shifting), and location (Spatial Shifting) according
to the grid’s carbon intensity. In this paper, we highlighted an in-
evitable tension between carbon and energy efficiency. We explored
the core mechanisms used in carbon-efficient computing along with
policies from the state-of-the-art in a wide range of scenarios. The
paper demonstrated qualitatively and quantitatively that “striving
for maximum energy efficiency is not always the most sustainable
(carbon-efficient) approach”. The gains and overheads of combining
multiple carbon-aware flexibility mechanisms are left for future
work.

ACKNOWLEDGEMENTS
We thank the HotCarbon reviewers for their valuable comments,
which improved the quality of this paper. We also thank WattTime
and electricityMap for providing the carbon-intensity data. This
research is supported by NSF grants 2213636, 2136199, 2106299,
2102963, 2105494, 2021693, 2020888, 2045641, 2211302, 2211888, US
Army contract W911NF-17-2-0196, DOE award DE-EE0010143, and
VMware, and Amazon Web Services.

REFERENCES
[1] 2014. The War of the Currents: AC vs. DC Power. https://www.energy.gov/

articles/war-currents-ac-vs-dc-power.
[2] 2022. Annual Electric Power Industry Report. https://www.eia.gov/electricity/

data/eia861/
[3] 2022. Global Trends in Internet Traffic, Data Centre Workloads and Data Centre

Energy Use, 2010-2019. https://www.iea.org/data-and-statistics/charts/global-
trends-in-internet-traffic-data-centre-workloads-and-data-centre-energy-use-
2010-2019.

[4] 2022. Greenhouse Gas Protocol. https://ghgprotocol.org/.
[5] 2022. Share of Cumulative Power Capacity by Technology, 2010-

2027. https://www.iea.org/data-and-statistics/charts/share-of-cumulative-power-
capacity-by-technology-2010-2027.

[6] 2023. 24/7 by 2030: Realizing a Carbon-free Future. https://www.gstatic.com/
gumdrop/sustainability/247-carbon-free-energy.pdf.

[7] 2023. Electricity Map. https://www.electricitymap.org/map.
[8] 2023. War of the Currents. https://en.wikipedia.org/wiki/War_of_the_currents.

ACM SIGENERGY Energy Informatics Review Volume 4 Issue 3, July 2024
92

[9] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj
Chakkaravarthy, David Brooks, and Carole-Jean Wu. 2023. Carbon Explorer: A
Holistic Framework for Designing Carbon Aware Datacenters. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems.

[10] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj
Chakkaravarthy, David Brooks, and Carole-Jean Wu. 2023. Carbon Explorer:
A Holistic Framework for Designing Carbon Aware Datacenters. In ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[11] Gene M Amdahl. 1967. Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities. In Proceedings of the Spring Joint Computer
Conference.

[12] Srini Bangalore, Arjita Bhan, Andrea Del Miglio, Pankaj Sachdeva, Vijay Sarma,
Raman Sharma, and Bhargs Srivathsan. 2023. Investing in the Rising Data
Center Economy. https://www.mckinsey.com/industries/technology-media-and-
telecommunications/our-insights/investing-in-the-rising-data-center-economy.

[13] Noman Bashir, David Irwin, and Prashant Shenoy. 2023. On the Promise and
Pitfalls of Optimizing Embodied Carbon. In Proceedings of the 2nd Workshop on
Sustainable Computer Systems (HotCarbon).

[14] Noman Bashir, David Irwin, Prashant Shenoy, and Abel Souza. 2022. Sustain-
able Computing – Without the Hot Air. In Proceedings of the First Workshop on
Sustainable Computer Systems Design and Implementation (HotCarbon).

[15] Roozbeh Bostandoost, Adam Lechowicz, Walid A. Hanafy, Noman Bashir,
Prashant Shenoy, and Mohammad Hajiesmaili. 2024. LACS: Learning-Augmented
Algorithms for Carbon-Aware Resource Scaling with Uncertain Demand. In The
15th ACM International Conference on Future and Sustainable Energy Systems (e-
Energy ’24), June 4–7, 2024, Singapore, Singapore. https://doi.org/10.1145/3632775.
3661942

[16] A. Chien. 2021. Driving the Cloud to True Zero Carbon. CACM 64, 2 (February
2021).

[17] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark, Roy
Schwartz, Emma Strubell, Alexandra Sasha Luccioni, Noah A. Smith, Nicole De-
Cario, and Will Buchanan. 2022. Measuring the Carbon Intensity of AI in Cloud
Instances. In 2022 ACM Conference on Fairness, Accountability, and Transparency
(FAccT ’22).

[18] Peter Xiang Gao, Andrew R. Curtis, Bernard Wong, and Srinivasan Keshav.
2012. It’s Not Easy Being Green. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communication (Helsinki, Finland) (SIGCOMM ’12). 211–222. https:
//doi.org/10.1145/2342356.2342398

[19] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David
Brooks, and Carole-Jean Wu. 2022. ACT: Designing Sustainable Computer Sys-
tems With An Architectural Carbon Modeling Tool. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (New York) (ISCA ’22).
784–799. https://doi.org/10.1145/3470496.3527408

[20] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee, Gu-Yeon
Wei, David Brooks, and Carole-Jean Wu. 2021. Chasing Carbon: The Elusive
Environmental Footprint of Computing. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA).

[21] Walid A. Hanafy, Roozbeh Bostandoost, Noman Bashir, David Irwin, Mohammad
Hajiesmaili, and Prashant Shenoy. 2023. The War of the Efficiencies: Understand-
ing the Tension between Carbon and Energy Optimization. In Proceedings of the
2nd Workshop on Sustainable Computer Systems (Boston, MA, USA) (HotCarbon
’23). Article 19, 7 pages. https://doi.org/10.1145/3604930.3605709

[22] Walid A. Hanafy, Qianlin Liang, Noman Bashir, David Irwin, and Prashant Shenoy.
2023. CarbonScaler: Leveraging CloudWorkload Elasticity for Optimizing Carbon-
Efficiency. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 7, 3, Article 57 (December 2023), 28 pages. https://doi.org/10.1145/
3626788

[23] Walid A. Hanafy, Qianlin Liang, Noman Bashir, Abel Souza, David Irwin, and
Prashant Shenoy. 2024. Going Green for Less Green: Optimizing the Cost of
Reducing Cloud Carbon Emissions. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, Volume 3 (ASPLOS ’24). 479–496. https://doi.org/10.1145/3620666.3651374

[24] Jakub Krzywda, Ahmed Ali-Eldin, Trevor E Carlson, Per-Olov Östberg, and Erik
Elmroth. 2018. Power-Performance Tradeoffs in Data Center Servers: DVFS, CPU
Pinning, Horizontal, and Vertical scaling. Future Generation Computer Systems
(2018).

[25] Etienne Le Sueur and Gernot Heiser. 2010. Dynamic Voltage and Frequency
Scaling: The Laws of Diminishing Returns. In Proceedings of the 2010 International
Conference on Power Aware Computing and Systems.

[26] Adam Lechowicz, Nicolas Christianson, Jinhang Zuo, Noman Bashir, Mohammad
Hajiesmaili, Adam Wierman, and Prashant Shenoy. 2023. The Online Pause and

Resume Problem: Optimal Algorithms and An Application to Carbon-Aware Load
Shifting. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 7, 3, Article 53 (Dec 2023), 36 pages. arXiv:2303.17551

[27] Mathieu Lemay, Kim-Khoa Nguyen, Bill St. Arnaud, and Mohamed Cheriet. 2012.
Toward a Zero-Carbon Network: Converging Cloud Computing and Network
Virtualization. IEEE Internet Computing (2012).

[28] Liuzixuan Lin and Andrew A Chien. 2023. Adapting Datacenter Capacity for
Greener Datacenters and Grid. In Proceedings of the 14th ACM International
Conference on Future Energy Systems (Orlando, FL, USA) (e-Energy ’23). 200–213.
https://doi.org/10.1145/3575813.3595197

[29] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving Resource Efficiency at Scale. In
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA).

[30] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey.
2020. Recalibrating Global Data Center Energy-use Estimates. Science (2020).

[31] David Patterson, Joseph Gonzalez, Urs Hölzle,Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David R. So, Maud Texier, and Jeff Dean. 2022. The
Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink. Com-
puter 55, 7 (2022), 18–28. https://doi.org/10.1109/MC.2022.3148714

[32] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon Emissions
and Large Neural Network Training. Technical Report. arXiv.

[33] Hang Qi, Evan R. Sparks, and Ameet Talwalkar. 2017. Paleo: A Performance
Model for Deep Neural Networks. In Proceedings of the International Conference
on Learning Representations.

[34] Ana Radovanović, Ross Koningstein, Ian Schneider, Bokan Chen, Alexandre
Duarte, Binz Roy, Diyue Xiao, Maya Haridasan, Patrick Hung, Nick Care, Saurav
Talukdar, Eric Mullen, Kendal Smith, MariEllen Cottman, and Walfredo Cirne.
2023. Carbon-Aware Computing for Datacenters. IEEE Transactions on Power
Systems (2023).

[35] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy. 2016.
Flint: Batch-Interactive Data-Intensive Processing for Transient Servers. In ACM
European Conference on Computer Systems (EuroSys).

[36] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero, Weijia Song, Robbert van
Renesse, and Hakim Weatherspoon. 2016. Follow the Sun through the Clouds:
Application Migration for Geographically Shifting Workloads. In Proceedings of
the Seventh ACM Symposium on Cloud Computing.

[37] Abel Souza, Noman Bashir, Jorge Murillo, Walid Hanafy, Qianlin Liang, David
Irwin, and Prashant Shenoy. 2023. Ecovisor: a Virtual Energy System for Carbon-
Efficient Applications. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems.

[38] Abel Souza, Shruti Jasoria, Basundhara Chakrabarty, Alexander Bridgwater, Axel
Lundberg, Filip Skogh, Ahmed Ali-Eldin, David Irwin, and Prashant Shenoy.
2023. CASPER: Carbon-Aware Scheduling and Provisioning for Distributed Web
Services. In Proceedings of the 14th International Green and Sustainable Computing
Conference (IGSC), Toronto, ON, Canada.

[39] Thanathorn Sukprasert, Abel Souza, Noman Bashir, David Irwin, and Prashant
Shenoy. 2024. On the Limitations of Carbon-Aware Temporal and Spatial Work-
load Shifting in the Cloud. In Proceedings of the Nineteenth European Conference
on Computer Systems (EuroSys ’24). 924–941. https://doi.org/10.1145/3627703.
3650079

[40] Jennifer Switzer, Gabriel Marcano, Ryan Kastner, and Pat Pannuto. 2023. Junkyard
Computing: Repurposing Discarded Smartphones to Minimize Carbon. In ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[41] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. 1996. Scheduling
for Reduced CPU Energy. Mobile Computing.

[42] Philipp Wiesner, Ilja Behnke, Dominik Scheinert, Kordian Gontarska, and Lauritz
Thamsen. 2021. Let’s Wait Awhile: How Temporal Workload Shifting Can Reduce
Carbon Emissions in the Cloud. In Proceedings of the 22nd International Middleware
Conference (Middleware).

[43] TimothyWood, K.K. Ramakrishnan, Prashant Shenoy, and Jacobus Van derMerwe.
2011. CloudNet: Dynamic Pooling of Cloud Resources by Live WAN Migration of
Virtual Machines. In International Conference on Virtual Execution Environments
(VEE).

[44] Chaojie Zhang, Alok Kumbhare, Ioannis Manousakis, Deli Zhang, Pulkit Misra,
Rod Assis, Kyle Woolcock, Nithish Mahalingam, Brijesh Warrier, David Gauthier,
Lalu Kunnath, Steve Solomon, Osvaldo Morales, Marcus Fontoura, and Ricardo
Bianchini. 2021. Flex: High-Availability Datacenters With Zero Reserved Power.
In Proceedings of the International Symposium on Computer Architecture (ISCA).

ACM SIGENERGY Energy Informatics Review Volume 4 Issue 3, July 2024
93

