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Abstract—To improve data center efficiency, job schedulers
often overcommit computing resources such that the sum of
the maximum resource requirements across running jobs on a
server exceeds its resource capacity while relying on statistical
multiplexing of workloads at runtime to reduce the likelihood
of saturating capacity and violating applications’ service level
objectives. The challenge with overcommitting resources is that
future job resource demand varies widely over time. As a result,
jobs’ collective resource usage may exceed resource capacity if
their periods of high demand align. Our key insight is that many
jobs often exhibit some periodicity in their resource usage, which
schedulers can leverage to improve resource usage predictions
and job placement decisions.

To leverage this insight, we show how to model jobs as simple
periodic functions and then develop a period-aware placement
policy that increases resource utilization while mitigating per-
formance degradation due to jobs’ collective resource usage
exceeding resource capacity. We evaluate our modeling approach
on a publicly-available job trace from a major cloud platform,
and show that it yields low (<30%) error for a large fraction
(~80%) of periodic jobs. We then evaluate our period-aware
placement policy on small problem instances, and show that
it is much closer to the NP-hard optimal policy than current
state-of-the-art policies. Finally, we evaluate our approach on an
industry job trace, and show that combining our periodic models
and a period-aware placement policy results in the best of both
worlds: higher average server utilization and lower performance
degradation by more than 2x than the existing state-of-the-art.

Index Terms—Datacenter, Cloud Computing, Job Placement,
Overcommitment, Workload Balancing

I. INTRODUCTION

Modern data centers require a massive capital investment
by companies that takes many years to recover. As a result,
an important goal for data center operators is to maximize
their resource utilization, as doing so amortizes the infras-
tructure’s large capital cost over more computation. Satisfying
growing computing demand by increasing existing data center
utilization is also much more cost-effective than incurring
additional capital costs to build new data center capacity.
In addition to the financial benefits above, maximizing data
center utilization also improves sustainability in multiple ways.
In particular, since servers and GPUs consume significant
baseload power when idle, increasing their utilization also
increases their energy-efficiency, i.e., computations per joule.
Further, reducing the need to build new data center capac-
ity decreases companies’ embodied carbon, i.e., the carbon
emitted from manufacturing physical infrastructure, which is
a significant fraction of their total carbon emissions [16].

Finally, the importance of maximizing data center utilization
is continuing to increase due to rapidly accelerating computing
demand for new AI services. Improving the utilization of
existing data centers is an increasingly attractive option for
satisfying rising Al demand, as building new data center
capacity is time-consuming and may not be possible in some
case due to current limits in grid power generation [5].

Due to the benefits above, and given the size of modern data
centers, even small increases in utilization can translate to
millions of dollars in cost savings. As a result, there has been
substantial prior work on increasing data center utilization
by improving job placement policies. However, despite this
prior work, average utilization in data centers remains low.
For example, recent estimates suggest that average data center
utilization is only 12-18% [8], while Google [27], [31] and
Azure [2], [14] report average utilization of 30% to 50%
with aggressive optimization strategies in publicly-available
job traces. The primary problem is that jobs typically request
resources based on their expected peak resource usage even
though their actual resource usage often varies widely over
time. Thus, to prevent violating job resource requests that may
degrade performance, conservative schedulers must ensure that
the sum of resource requests, i.e., the expected peak resource
usage, across all jobs on each server does not exceed its
resource capacity [29]. Since jobs’ average ratio of peak-to-
average utilization is often quite high, e.g., from >>2x to
>>100x [2], such that most jobs use few resources the vast
majority of the time, conservative scheduling results in long
periods of low average utilization.

Prior work has addressed the problem by using the recent
past to better predict both jobs’ [24] and servers’ [10], [14] ex-
pected peak resource usage. The former case generally reduces
jobs’ initial resource requests, which are often conservatively
set by users and significantly over-estimate their peak resource
usage (typically by >30%), while the latter case increases
estimates of servers’ available capacity, which is a function
of the predicted peak resource usage across all jobs. Better
predictions enable packing more jobs on each server and are
examples of overcommitting resources, which result in jobs
being placed on servers such that the sum of the jobs’ resource
requests may exceed their server’s resource capacity, creating
the potential for performance degradation if predictions of job
and server peak resource usage are inaccurate. Importantly,
while prior work increases server utilization while mitigating
performance degradation relative to conservative schedulers, it



relies on static predictions of jobs’ and servers’ peak resource
usage, even though such peak usage is typically rare.

Indeed, our analysis in §II-A of a publicly-available large-
scale industry trace [2] shows that not only are peak utilization
periods rare with job and server resource usage varying widely
over time, but also that many jobs exhibit some degree of
periodicity in their resource usage, i.e., a generally repeating
pattern over time of high and low utilization periods. As we
show, jobs exhibit a wide range of periods from short (20
minutes) to long (1 week). Of course, such periodicity is
approximate with some jobs showing much more regularity
than others. Our key insight is that job schedulers can leverage
such periodicity to improve their resource usage prediction and
job placement decisions. That is, rather than predicting future
job or server resource usage as a single static number, which
represents their expected peak resource usage, we can instead
estimate it using a time-varying periodic function.

As we discuss, modeling job resource usage as time-varying
periodic functions enables a job placement policy to consider
not only the expected magnitude of a job’s peak resource
usage but also its frequency. For example, a period-aware
placement policy may decide to run a job on a server despite
a high expected peak resource usage if its expected frequency
is low. A period-aware placement policy could also identify
complementary jobs that do not increase a server’s peak
utilization when co-located. For example, two jobs with peak
periods that occur every 4 hours but are entirely out-of-phase
with each other will not increase a server’s peak utilization
since the jobs peak at different times. Our hypothesis is that
modeling jobs as simple periodic functions and leveraging a
period-aware placement policy can increase server utilization
compared to current peak-aware policies while mitigating
performance degradation due to jobs’ collective resource usage
exceeding resource capacity. In evaluating our hypothesis, we
make the following contributions.

Period-aware Job Modeling. We analyze a large-scale in-
dustry job trace by conducting a frequency analysis to detect
jobs’ periodicity and quantify its strength. We find that >90%
of jobs exhibit some periodicity across a wide range of period
intervals. We then develop a technique for modeling these jobs
as simple time-varying periodic functions based on their peak,
trough, period, phase, and duty cycle.

Period-aware Placement Policy. Given jobs modeled as
time-varying periodic functions, we develop a period-aware
placement policy to maximize average server utilization while
mitigating the performance degradation that occurs when jobs’
resource usage exceeds servers’ resource capacity.
Implementation and Evaluation. We implement our period-
aware placement policy above, and compare its performance
relative to the NP-hard optimal policy (on small problem
instances) and to current peak-aware policies (on an industry
job trace). We show that combining our periodic models and
period-aware placement policy results in both higher server
utilization and lower violation severity (and performance
degradation) by more than 2x compared to the current state-
of-the-art policy.

II. BACKGROUND AND MOTIVATION

Below, we provide background on the operation of modern
job schedulers and resource overcommitment, and then moti-
vate our work by analyzing job resource usage in a publicly-
available industry trace to quantify job periodicity.

A. Job Placement in Data Centers

Our work assumes a job scheduler, such as Kubernetes [11]
or Borg [27], [30], that schedules jobs and allocates resources
for a cluster of servers in a data center. Parallel jobs may be
composed of one or more tasks that run on different servers.
Jobs submitted to the scheduler specify requested resources
for each task, such as memory, number of cores, fractions
of cores, etc., which implicitly represent their expected peak
resource usage. To prevent resource violations, a conservative
scheduler never places a new job on a server if the sum of
the requested resources (or resource limits) of its running jobs
plus the new job’s requested resources exceeds the server’s
resource capacity (along any dimension). Preventing violations
is important, as exceeding a server’s memory capacity could
result in a job terminating due to an out-of-memory error,
while exceeding a server’s CPU capacity causes throttling
that could lead to unacceptable violations in Service Level
Objectives (SLOs). Of course, jobs may include other requests,
such as specific server types, that further restrict the set of
acceptable servers on which a job can run.

Conservative scheduling yields low resource utilization be-
cause users are risk-averse and generally over-estimate their
resource requests to prevent resource and SLO violations. To
address the problem, modern schedulers collect and archive
vast amounts of resource usage data for running jobs. Prior
work leverages this historical job resource usage data to
provide better estimates of jobs’ maximum resource require-
ments (or peak resource usage), and then automatically adjusts
their resource limits [24]. Assuming accurate estimates, this
decreases each job’s expected peak resource usage, enabling a
scheduler to pack more jobs on each server without causing re-
source violations, and thus increases average server utilization.
Related work also focuses on improving predictions of servers’
peak resource usage using resource usage data [10], [14]. Since
jobs’ peak resource usage rarely occurs at the same time, a
server’s peak resource usage is typically much lower than the
sum of its jobs’ resource limits. Again, assuming accurate
estimates, this increases a scheduler’s estimate of servers’
available capacity, enabling it to pack more jobs on each
server. Both approaches are forms of resource overcommit-
ment, since, in both cases, the sum of resource requirements
(or limits) of jobs placed on a server may exceed its capacity.

Our work builds on the work above, and assumes the same
basic environment with a cluster scheduler, such as Kubernetes
or Borg, that accepts job submissions with specified resource
requirements. As above, we assume the scheduler runs jobs
in containers and applies resource limits, e.g., using cgroups,
based on each job’s resource requirements. Finally, we also
assume that each server collects and archives telemetry data
on running jobs’ resource usage. Importantly, the work above
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Fig. 1: Example of smoothed resource usage using low-pass
filter that preserves essential time-varying characteristics.

is based on static, rather than time-varying, predictions of jobs’
and servers’ peak resource usage. However, as we show below,
not only does job resource usage vary widely over time, it is
often periodic and thus predictable.

B. Job Periodicity Analysis

To motivate our period-aware approach, we analyze job
periodicity in a large-scale publicly-available industry job trace
from Azure [2]. The Azure dataset includes two traces of
virtual machines (VMs) that cover 30 days, which include
~2M and ~2.6M VMs. Both traces include a number of
resource usage telemetry metrics every 5 minutes, such as
memory usage and the distribution of core utilization.

To quantify job periodicity, we first perform a frequency
analysis on job resource usage data. Here, we focus on jobs’
core utilization, but our general approach is applicable to other
resources, such as memory. Since core utilization is noisy,
we first smooth the data without significantly affecting its
important time-varying attributes, such as its peak, trough,
phase, and period. Using a simple exponentially-weighted
moving average (EWMA) is not effective for smoothing, as
it tends to decrease the peak and increase the trough of each
period when averaging in the noise. To address this issue, we
instead apply a Butterworth filter [12], which is a commonly
used low-pass filter for smoothing time-series data that better
preserves the data’s peak and trough. Figure 1 plots both the
raw (top) and smoothed (middle) data of an example job’s
resource usage time-series before and after applying the filter.

We next apply a Fast Fourier Transform (FFT) on the
smoothed data to translate the core utilization time-series
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Fig. 2: Histogram of normalized period strength (top) and
period length (bottom) for all jobs in the Azure dataset. Here,
NP means no period detected.

into the frequency domain, where the magnitude of the y-
axis represents the frequency’s strength on the z-axis. Fig-
ure 1(bottom) shows the frequency analysis for our example
periodic job. Here, we measure frequency in 1/days rather
than 1/seconds (Hz) for readability. In general, as in this
example, jobs’ periodicity is evident from visual inspection.
If the strongest frequency falls below some lower threshold,
we classify the job as aperiodic, i.e., having no period. Our
frequency analysis confirms intuition and, in this case, shows
the frequency with the highest magnitude is roughly daily.
We conduct the frequency analysis above on the core
utilization for all jobs in the Azure trace to quantify the preva-
lence, strength, and distribution of their periodicity. Figure 2
shows a histogram of the period strength (top) and period
interval (bottom). To remove outliers, we normalize the FFT
magnitudes based on a linear scale from 0-100% where we
set 100% to a high value (20k) that represents highly periodic
resource usage. We set any jobs with FFT magnitudes greater
than 20k to 100%. The periodicity score in Figure 2(top) shows
that a large fraction (~30%) of jobs in the Azure traces exhibit
high periodicity with most jobs exhibiting some non-trivial
periodicity. We next show that this periodicity is distributed
across a wide range of period intervals. Figure 2(bottom)
shows the distribution of the period lengths across all jobs.
The graph shows that the period lengths are widely distributed
from short (a few hours) to longer (up to a day) periods
with small percentage of jobs having multi-day periods. The
underlying cause of the periodicity is likely a combination of
many factors, such as interactive services with resource usage
varying based on user behavior and routine monitoring and
logging jobs that run at regular intervals.
Key Result. Our analysis shows that job resource usage in a
large-scale industry workload exhibits significant periodicity
with most jobs having some degree of periodicity with periods
ranging widely from less than an hour to a week or more.



III. PERIOD-AWARE MODELING AND PLACEMENT

Below, we present our approach for period-aware job mod-
eling of jobs, and then develop a period-aware job placement
policy that leverages our modeling approach.

A. Period-aware Job Modeling

Prior work focuses on modeling and predicting jobs’ re-
source requirements and servers’ resource usage as a single
parameter, which represents their expected peak resource
usage [10], [14], [24]. The former dictates the maximum
“size” of each job, while the latter dictates the expected
available capacity on a server (when deducted from its total
capacity). Prior work estimates this peak resource usage based
on historical data in a variety of different ways ranging from
more conservative to more aggressive, which we describe
in detail below. Our approach instead models jobs’ resource
requirements and thus servers’ resource usage as time-varying
periodic functions. As with prior work, we estimate the
parameters of these functions based on historical data. As we
describe below, the primary difference with our approach is
that rather than estimating a single parameter based on histor-
ical data, our models require estimating multiple parameters
that capture job periodicity.

Our model of expected resource usage is based on a time-
varying periodic function (f(¢)) that is characterized by a
waveform along with parameters that define its peak (fq2),
period (T'), phase (¢), trough (finin), and duty cycle (9),
i.e., the active fraction of each period. Note that a periodic
function’s amplitude (@) i8S (frnaz — fmin)/2 and its frequency
(v) is 1/T. While there are a number of common waveforms
for periodic functions, we use a simple pulse wave, as opposed
to a sine or triangle wave, since it permits a variable duty cycle.

We can represent a pulse wave using a piecewise function,
as described below, based on its peak (fi,qz), trough (finin),
period (T), phase (¢), and duty cycle (9).

fmax
fmin

Figure 3 shows an example pulse wave with the different
attributes labeled. Modeling resource usage using a pulse wave
simply requires estimating these attributes from historical data,
which we describe below. Note that before estimating any of
the values below, we smooth the data using the low-pass filter
described in §II-A, which preserves the main attributes, i.e.,
peak, trough, period, phase, and duty cycle.

1) Resource Peak ( fq.): There are many approaches for
estimating the peak resource usage (fy,qz), as this is a primary
focus of prior work [10], [14], [24], [27]. For example, a
common approach many schedulers use in practice is to
estimate f,,q, as a certain fixed fraction of jobs’ requested
resources (or, in the case of a server, the sum of all jobs’
requested resources) [1], [3], [6], [9]. However, this approach
is static and does not consider jobs’ actual resource usage.
Instead, a naive approach that does consider past resource
usage is to simply set f,q. equal to the peak resource usage
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Fig. 3: Example of our pulse wave model with the peak, trough,
period, phase, and duty cycle labeled.

over some prior window (W) that is much longer than the
estimated period 7. However, this approach is prone to over-
estimating future peak resource usage if the absolute peak over
W is an outlier. To address this issue, other approaches predict
fmas either i) as a configurable percentile of a job’s resource
usage (or the sum of the percentile of each job’s resource
usage for a server) [14] or ii) as a configurable number of
standard deviations from the resource usage mean [10]. While
our model can use any techniques above, we generally estimate
fmaa as a configurable percentile of historical resource usage
as with [14]. This percentile is typically high but less than the
maximum to remove outliers, e.g., 95th percentile.

2) Resource Trough (fpin): Prior work does not focus
on estimating f,,;, because jobs’ and servers’ minimum
resource usage does not directly dictate either the required
or available capacity, respectively, in the absence of time-
varying predictions. However, f,,;, is important with time-
varying predictions that consider multiple jobs, since the
alignment of jobs’ resource usage over time determines overall
resource usage and available capacity. Since estimating f,;, 1S
essentially the dual of estimating f,,,4., we can adapt many of
the same techniques as above. Specifically, we estimate [,
also as a configurable percentile of historical resource usage,
but use a low percentile greater than the minimum to remove
low outliers, e.g., Sth percentile.

3) Period (T): We use the same technique as discussed
in §II-A’s periodicity analysis to estimate jobs’ and servers’
period (1I') based on historical resource usage. Specifically,
we apply FFT to convert the smoothed data over a prior
window W into the frequency domain, and then select the
frequency with the highest magnitude to derive the period.
If the frequency magnitude falls below a low configurable
threshold we classify the job as aperiodic. In this case, we
revert to job modeling using only f,,,4, as in prior work.

4) Phase (¢): Estimating the phase requires detecting a
specific time (¢) when a period starts as a reference point.
One approach for detecting a phase time is to infer that a
period “‘starts” when its resource usage is close to its resource
peak (finqz). We can detect such phase times in the historical
data, although there may be both missing times (e.g., if in
that period the peak did not reach the 95/"%) and additional



times (e.g., if an outlier peak occurs or multiple peaks occur)
that result in these phase times not being separated by 7" time
units. We can then adjust for these spurious phase times by
filtering the sequence of times ¢, such that we remove any
times ¢; such that |(t;modT’) — (tsmodT’)| > € where t, is
some initial selection. We perform this filtering for many ¢,’s
and then select the filtered sequence with the lowest average
|(timodT') — (tsmodT')|, as we expect a sequence with period
T to repeat with some regularity.

5) Duty Cycle (§): The duty cycle (d) is the estimated
length of the active interval every period 7" such that d<T.
One simple approach for estimating the duty cycle is to
simply compute the error between the model and historical
resource usage using multiple duty cycles and use the one with
the lowest error. Another approach is to apply changepoint
detection, which are algorithms designed to detect abrupt
changes in time-series data [28]. Changepoint detection is
a mature area with many existing algorithms. In this case,
changepoints would correspond to a sequence of times when
a duty cycle starts or finishes. We can infer whether the cycle
is starting or finishing based on whether resource usage is
increasing or decreasing at the specified time and ascribe a
positive or negative value to each time. However, as above,
there may be spurious detections due to noise.

Thus, we can filter the sequence to remove potentially

spurious detections, assuming the time sequence with ideal
periodicity i) should alternate between positive and negative
values and ii) the interval between adjacent positive values
(and negative ones) should be within some € of T'. To do so, we
separately filter the positive values and negative values using
the phase filter above. We then compute the time difference
between adjacent positive and negative times, remove any
greater than T (as the duty cycle must be less than the period),
and estimate the duty cycle as the median of these time
differences to remove the effect of outliers.
Discussion. Our models assume only a single period, since
most jobs exhibit a single dominant period. That said, resource
usage may have multiple active periods, e.g., daily and weekly.
While our period detection above can detect multiple periods,
extending our model to multiple periods is future work. In our
case, the filters for the phase and duty cycle will remove any
values not aligned with the primary period 7.

Figure 4 shows an illustrative example of our modeling
approach. Specifically, Figure 4(a) and (b) shows historical
resource usage for each job, along with a model generated at
a specific time using a pulse wave, which captures both jobs’
peak, trough, periodicity, period, phase, and duty cycle. Note
that the job in (b) has two strong periods: one that occurs
roughly daily and another that occurs roughly weekly. In this
case, our model selected the daily period for the modeling
prediction. Figure 4(c) then shows a combined trace of a
server running (a) and (b) along with the combined models
of (a) and (b). The figure shows that the modeling framework
matches the peaks and troughs of the server’s resource usage.
In this case, we configured our modeling to be conservative
and estimate f,,, based on a high percentile of the historical
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Fig. 4: Illustration of modeling two jobs (a) and (b) with time-
varying periodic pulse waves. The server in (c) shows the
combined resource usage of both jobs running on the server,
along with the sum of both models.

peak to reduce the likelihood of resource violations, i.e., actual
resource usage exceeding the models prediction. Thus, the
server model has no violations, i.e., where the resource usage
exceeds the model estimate, and serves as an upper bound
on resource usage. Even so, the job model in (a) has a few
violations in the latter part of the trace due to outlier peaks.

B. Period-aware Job Placement

We next develop a period-aware job placement policy that
leverages periodic job models to inform placement decisions
that maximize server utilization while mitigating the severity
of resource violations from job resource usage exceeding
server capacity. More formally, given a cluster with n servers
si, each with resource capacity ¢, and m jobs ji with
resource usage modeled as a time-varying periodic function
fx(t). The violation occurs when f;(t) > ¢, the violation
severity at any time ¢t on server ¢ can be formulated as
vi(t) =37 Sy fi(t) — c. Here, fi(t) represents the time-
varying periodic function of resource usage of job j; when
placed on server s;. Our job placement policy’s objective is
to assign each job j, to a server s; such that it minimizes
> 7 w;(t) for all t. The summation represents the aggregate
amount that the resource usage on each server exceeds its
capacity for all times ¢, which we call the aggregate violation
severity and denote as V.

Ideally, the summation above is 0 such that jobs’ collective
resource usage never exceeds any server’s resource capacity.
However, if jobs’ resource usage exceeds their server’s capac-
ity, it results in some performance degradation (or violations)
across the jobs since actual server resource usage cannot
exceed 100% of capacity. Here, our periodic job models and
capacity are a single dimension, i.e., processing capacity,
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but it is straightforward to extend the approach to multiple
dimensions, such as memory or network bandwidth, by simply
extending the periodic job models to model each dimension,
normalizing each dimension by its capacity, and then summing
over each dimension. Aggregate violation severity V' is the
product of the violation rate v, and the average violation
severity v, where i) the violation rate v, is the fraction of
times ¢ where a violation occurs, i.e., when 7" i) > ¢
Vt, and ii) the average violation severity v, is the aggregate
severity V' divided by the total workload during time 7T'.

Our problem is a variant of a classic bin packing problem
with time-varying weights and “overfill” where the number of
bins is fixed, the items (or jobs) have time-varying weights (or
resource usage), and the objective is to minimize the overfill of
the bins, i.e., the amount the sum of the weights of the items
in each bin exceed the capacity. As with other bin-packing
problems, the optimal solution to this problem can be modeled
as a Mixed-Integer Linear Program (MILP) as shown below.
While the general problem is NP-hard, modern solvers, such
as Gurobi or CPLEX, can find optimal solutions for small
problem instances.

T
Minimize Z Z%‘(t)
m n Z tIO
Subjectto > Y mip=1,Vicl---n (1)
k=1 1i=1
ST i) < (c+vilt)) )
=1
i) >0,Vi€l, - mVtel, - . T (3)

As mentioned above, our objective is to minimize the
violation severity over all servers s; and times t. The first
constraint is a binary decision variable x; j, that ensures each
job is assigned to a single server. The second constraint states
that the total resource usage (or weight) assigned to each server
¢ at time ¢ does not exceeds its capacity plus v;(t), which
captures the amount of overflow. Finally, the third constraint
ensures that v;(t) is never negative at all times ¢.

Unfortunately, optimally solving the problem is not practical
for large instances, as its worst-case running time is exponen-
tial in the number of jobs and servers. In addition, the optimal
solution requires knowledge of all jobs, while in practice jobs

arrive and must be placed immediately without knowledge
of future job arrivals. Thus, while the optimal solution can
serve as a useful baseline for comparison for small problem
instances, practical job placement policies must use heuristics.
As mentioned earlier, current job placement heuristics are
generally peak-based in that they place jobs on the server
such that it minimizes the sum of the server’s estimated peak
resource and the new job’s estimated peak resource usage [10].
Thus, unlike our models, peak-based policies do not capture
jobs’ time-varying resource usage.

Thus, we design a period-driven job placement policy that
places a job on the server that minimizes the expected increase
in aggregate violation severity V' based on our period-driven
models. The intuition is to place each job on the server where it
best fits to minimize exceeding server capacity. Such a greedy
policy also needs a consistent method for deciding where to
place jobs when many servers are below capacity, causing all
servers to yield the same increase in V, i.e., zero increase.
We address this issue by replacing the cluster’s capacity with
virtual capacity to be equal to its average utilization across
all jobs including the newly arriving job. We then place the
newly arriving job on the server that minimizes the increase
in aggregate violation severity V' with respect to this virtual
capacity Clina (t). The constraints (2) are updated as:

1 m
Cvirlual t)=— fk t
() = 7 2 Al
n
D W) - i) < (Cuimuar(t) + vi(2))
i=1
In this case, V will never be zero relative to the virtual
capacity unless it is the ideal case where capacity precisely
matches utilization. Figure 5 illustrates our approach using a
representative cluster configuration consisting of three servers.
Under conventional scheduling that considers only real capac-
ity (100% threshold), all servers would remain below their
capacity limits after accepting the incoming job request. In
this scenario, traditional schedulers would resort to random
assignment, as no capacity constraints would be violated.
However, our proposed scheduler incorporates virtual ca-
pacity constraints, depicted by the blue dotted lines in Fig-
ure 5 (virtual capacity is 46%). By enforcing these virtual
thresholds, the scheduler can differentiate between servers



Algorithm 1: Period-Driven Job Placement Policy

Input: n Servers S = {s1,...,sn} with virtual capacities
{c1,...,cn} and each server has m jobs ji with
resource trace 74 (t), t € [0, 77, a threshold 6 of
periodicity

Output: Placement of job j to server s*

1 Function ModelJob (ji) :

2 Py, + max [FFT(r4(¢))],t € [0,T] ;

// Periodicity strength

3 if ji without historical trace or Pj, < 6 then
return fi(t) = Percentiley(r(t)) ;

// Non-periodic model

5 else
6 Extract fmaXs fmins T, (Z)’ 6 from Tk (t) 5
// Pulse wave model
fmaX7 lf‘((t_(ﬁ) mod T) <6T
7 return fi(t) = fmin, otherwise
8 end
9 for ji in {ji,...,jm} do
10 fx(t) < ModelJob(jk);
11 for s; in S do
12 vi(t) = ZjGSf fi(t)—ci; // Violation if
positive '
13 end
14 end

15 8% < argming, es vi(t) ; // Choose server with

minimum violations

based on their proximity to capacity limits. Specifically, when
evaluating server candidates under virtual capacity constraints,
our algorithm selects Server a, which exhibits the lowest
aggregated violations among all available options. This ap-
proach encourages load balancing jobs across the cluster as
they are placed to minimize violation severity with respect
to the average server utilization. Thereby maintaining system
stability and performance predictability even when traditional
capacity metrics suggest equivalent server states.

Importantly, the optimal solution and our period-driven
policy above need only run over a time 7' that represents
the least-common multiple of all the job periods, since this
represents the period for the entire cluster’s resource usage.
In §V, we compare the optimal solution, peak-based policies,
and our period-aware policy for small problem instances, and
then compare the peak-based and period-aware policies for our
large-scale industry job trace. Algorithm 1 shows pseudocode
for our period-driven placement policy.

IV. IMPLEMENTATION

We implemented our period-aware modeling framework and
job placement policies in python. We implement each policy
as a separate module that can be integrated into existing sched-
ulers. Our period-aware modeling takes as input historical
resource usage data, and then applies the techniques from §III
to detect whether a job’s resource usage is periodic and, if so,
to estimate the peak (fi,qz), trough (finin), period (T'), phase
(¢), and duty cycle (§). If the data is aperiodic, the model only
estimates f,q.. We implement the optimal placement policy
using Google OR-Tools [4] and our period-driven placement

e o o =
> o ® o
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Probability (NRMSE < x)
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Fig. 6: CDF of NRMSE for our period-aware job models
across 20k jobs in the Azure trace [2].

policy in Algorithm 1. As baselines for comparison, we also
implement a random placement policy, a best-fit policy, and
a policy that is based on the policy from the Borg scheduler,
which estimates a job’s peak resource usage as a single value
and places the job on a server to maximize the expected
remaining capacity [10].

To evaluate our job placement policy, we wrote a simulator
that takes job requests (with associated resource usage) and
places them on servers with a configurable capacity. The
simulator replays jobs from a job trace based on their recorded
resource usage, and places jobs using one of the policies
above. The simulator enables adjusting the number of servers
and jobs placed. Of course, the performance is a function of
the ratio of aggregate job resource usage to aggregate server
capacity. In general, we configure enough servers such that
the average resource utilization is 45-55%, which in practice
would represent the high-end of a typical cluster’s utilization,
although we also experiment with varying the load level.
Note that, in practice, job placement may be constrained by
other requirements, such as the type of server or proximity to
other servers or a particular rack. Here, we do not take such
requirements into account, since that information is generally
not available in public traces.

V. EVALUATION

We first evaluate the accuracy of our period-aware job
modeling technique, and then evaluate our period-driven job
placement policy for both small problem instances (where we
can compare with the optimal solution) and large problem
instances. In both cases, we use random samples of job traces
from Azure as the job workload, as discussed below, where
each job trace covers a 30-day period [2]. We compare our
period-driven placement policy with a Borg-like policy, which
model each job using only its peak resource usage [10], [14],
along with random and best-fit placement policies.

A. Period-aware Modeling Error

We quantify our model error using the normalized root mean
square error (NRMSE) as shown below, where y; represents
raw data points and ¢; represents our models’ prediction.

VE S i - 0
NRMSE = -
maz(y;) — min(y;)
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when 10k jobs randomly sampled from the Azure dataset are placed on 2k servers.

We model 20k randomly sampled jobs in the Azure trace
as time-varying periodic functions. Figure 6 shows the CDF
of the NRMSE when modeling the jobs in the Azure trace.
The figure shows that over 80% of the jobs have a NRMSE
less than 0.3, which matches with our periodicity analysis
from §II-A and shows a high fraction of jobs are periodic.
In particular, Figure 2(a) shows that roughly 80% of jobs
have a period strength greater than 20%, which indicates some
non-trivial periodicity. For reference, a 20% period strength is
slightly less periodic than the example in Figure 1. This result
shows that our period-aware modeling framework is effective
at accurately modeling a large fraction of periodic jobs in the
Azure trace.

B. Comparing with Optimal

We next evaluate the performance of multiple different job
placement policies on small problem instances, and compare it
with the optimal solution using MILP along with our baseline
placement policies.

We compare the policies in terms of the average job’s i)
violation rate, i.e., the fraction of time resource usage exceeds
server capacity, ii) violation severity, i.e., the aggregate amount
that resource usage exceeds server capacity over time, and
iii) average server utilization. We normalize a job’s violation
severity relative to its resource usage, such that a 10% violation
severity means that on average 10% of the job’s workload

exceeded server capacity. In this case, exceeding capacity
would correspond to performance degradation that causes a
SLO violation.

Figure 7 shows the results for a small problem instance that
includes 100 randomly sampled jobs from the Azure trace
that are placed on a cluster of 20 servers and executed for
1 day. Thus, here, we only consider periods less than one
day. We set a periodicity threshold of 0.1, such that if a
job’s strength of periodicity is less than this value, we model
it similarly to the Borg-like policy using only its estimated
peak usage, i.e. fiqz- Since job order matters for the non-
optimal placement policies, we report the average and 95th%
confidence intervals across 100 experiments with different
random job orderings. As expected, the random policy yields
near the highest violation rate (left), highest violation severity
(middle), and lowest average utilization (right), since it does
not consider job or server resource usage when placing jobs.
In contrast, as expected, the optimal policy yields the lowest
violation rate, lowest violation severity, and highest average
utilization. Indeed, the optimal policy is able to place all jobs
without incurring any violations, and thus maximizes cluster
utilization at ~57%.

The best-fit policy has a worse violation rate than random
but a better violation severity and utilization. In contrast,
the Borg-like policy, which is akin to existing work on
job modeling and placement policies [10], performs better



14
e --@-- Oracle ‘\
35 , —e— Period-Driven 12 \\
— —e& - Borg-Like § »
SR I =10 \
£
g% 5
o 3 8
c 20 n
2 c 6
& 15 2
S g,
5 10 °
>
5 2

--@- Oracle

. ) @+ Oracle
—— Penod-.Dnven 904 —e— Period-Driven
=@ - Borg-Like —e-- Borg-Like

801

70

60

50 1

Average CPU Utilization (%)

LI A S B S
10 11 1.2 1.3 14 15 1.6 1.7 1.8 1.9 20
Number of Servers (in 1k)

Qo
10 11 1.2 1.3 14 15 1.6 1.7 1.8 1.9 20
Number of Servers (in 1k)

0+ T T T T T T T T T T
10 1.1 12 13 14 15 16 17 18 19 20
Number of Servers (in 1k)

Fig. 9: The violation rate (left), violation severity (middle), and average server utilization (right) for our Peak-Driven, Borg-
Like and Oracle placement policies when 10k jobs randomly sampled from the Azure dataset are placed on varying numbers
of servers from 1k ~ 2k. Each experiment group has interval of 100 servers.

8.0 a.0 60.0
o ® . ® Model ® Model ® Model
[} e ® Real Traces 3.5 ® Real Traces 3 ® Real Traces
700 9 o e 3 < 50.0
a () S c e ¢ o o o o o o o
X 6.0 * o >3~0'.o o % % %0 %0 %0 %0 %0 T Te T e
-~ . =
Q o o [ = f o o + 40.0
5.0 ° L] e | of °f s o ! =
o o H o * e 5
c 4.0 & 2.0 . 3 30.0
o L ]
2.0 §1s g
X = . U 20.0
2 L] ® H
S20 QLo 1 9
> slo.o
1.0 0.5 F 4
0.0 0.0 0.0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Ratio of Period-Aware Job (%)

Ratio of Period-Aware Job (%)

Ratio of Period-Aware Job (%)

Fig. 10: The violation rate (left), violation severity (middle), and average server utilization (right) for our peak-driven as the
fraction of jobs we model as periodic time-varying functions changes.

across all three metrics. However, since it only models jobs’
peak usage, it performs much worse than our period-driven
policy that models jobs as time-varying periodic functions.
In particular, our period-driven policy has nearly a 5x lower
violation rate and 2.5x lower violation severity compared
to the Borg-like policy, while also yielding a slightly higher
average server utilization. Importantly, in industry, avoiding
violations and minimizing their severity is critical as they
generally correspond performance degradation for users. Thus,
the substantially lower violation rate and severity is significant
in reducing length and severity of performance degradation
for users. In addition, even small increases in utilization
can result in millions of dollars in cost savings in today’s
data centers. Overall, our period-driven policy for this small
problem instance performs much better than existing policies
and is near the optimal in terms of violation rate, violation
severity, and average server utilization.

C. Azure Case Study

We next evaluate our non-optimal policies on the larger
Azure dataset where optimal placement cannot be computed
efficiently. For this case study, we randomly sample 10k jobs
from the Azure trace and place them on a cluster of 2k servers.
As above, we set the period threshold to 0.1. We examine
multiple factors that affect performance, such as the load level
and fraction of aperiodic jobs.

Baseline Performance. Figure 8 shows the violation rate
(left), violation severity (middle), and average utilization

(right) for the different policies when placing 10k jobs across
2k servers. As above, we run 100 experiments that select jobs
in a different random order and report the average and 95th%
confidence interval. The results are similar to those of our
small-scale experiments with the period-driven policy outper-
forming the other policies across all metrics. Specifically, our
period-driven policy has a 39% lower violation rate, a 56%
lower violation severity, and a slightly higher server utilization.
Varying Server Capacity. We next focus on comparing our
period-driven policy with the Borg-like policy and an oracle
policy that has perfect knowledge of future peak resource
usage for different load levels. Here, we vary the load by
varying the number of servers without changing the number
of jobs we place. Figure 9 shows the results for violation
rate (left), violation severity (middle), and average utilization
(right). As expected, as the server capacity decreases (and load
increases), the violation rate, violation severity, and average
server utilization increase for all the placement policies. In
all cases, our period-driven policy outperforms the Borg-like
policy and is generally close to the oracle policy, which uses
perfect predictions of jobs’ future peak usage.

Varying Fraction of Periodic Jobs. Clearly, our approach is
more effective when there is a high fraction of periodic jobs
in the workload. When jobs are not periodic, we model them
based on only their estimated peak resource usage (fqz) as
in the Borg-like policy [10]. As a result, when 0% of the
jobs are periodic, our approach is equivalent to the Borg-like
placement policy. Figure 10 graphs the violation rate, violation



severity, and average server utilization as the fraction of jobs
we model with time-varying periodic functions increases for
our period-driven policy.

In this case, we use the same set of 20k jobs as above, but
only model a fraction of them using periodic functions, while
the rest we model as just their estimated peak value. In this
case, we sort jobs from most periodic to least periodic (based
on their FFT magnitude) and add the most periodic jobs first.
We plot each metric based on both jobs’ periodic models and
their real resource usage. The graph demonstrates our models’
accuracy, as the metrics using the models and the real resource
usage are similar. The graph also shows that, as expected, the
violation ratio and severity decrease as we model more jobs
as periodic functions, while the utilization increases slightly.

VI. RELATED WORK

There has been substantial prior work on modeling job and
server resource usage to enable accurate workload predictions
and better job placement. For example, Resource Central (RC)
collects a range of telemetry metrics on resource usage and
uses them as input to a machine learning model that predicts
resource usage [14]. Notably, one of the models RC uses
leverages an FFT to detect periodicity in usage. However,
unlike our modeling approach, RC’s approach is ML-driven
and opaque, and predicts individual metrics and not a future
workload time-series. For example, one metric it predicts is
the 95th% CPU utilization which can be used as an estimate
for finae, similar to our approach for modeling f,,q.. The
Borg-like placement policy we compare with is based on prior
work [10] and uses a simpler statistical metric to predict peak
server usage, which can be used to inform job placement.

Our work, and the work above, is also related to the
concept of resource overcommitment, e.g., an Al-based system
Coach [22] exploiting temporal patterns to improve the Azure
VMs oversubscription resources management, as the estimated
resource usage peak is akin to a job’s resource requirement.
Our models instead provide an estimate of each job’s resource
requirements over time, and thus improve upon prior work
by enabling overcommitment of resources over time. Notably,
neither approach attempts to model future job or server re-
source usage over time as a periodic function, which is the
key characteristic for our modeling and placement policy.

Our work is also related to a range of prior work that focuses
on much shorter time-scale, e.g., minute-level, predictions of
job resource usage [15], [20], [25]. In contrast, our approach
operates over long multi-period timescales. There have been a
range of other works that focus on predicting resource usage
to inform job scheduling and placement, although our work
differs in that it specifically models jobs with time-varying
periodic functions [13], [17], [18], [23], [26]. Prior work has
also focused on optimizing resource allocation for jobs that are
submitted periodically [21]. However, this work differs from
our focus on jobs that have periodic resource usage.

VII. CONCLUSION

Our key insight is that many jobs often have some pe-
riodicity in their resource usage, and thus are inherently
predictable based on this period. We analyze a large-scale
public industry job trace to detect and quantify this periodicity.
We then introduce a simple modeling framework that models
jobs based on time-varying periodic functions and show how
to leverage these models by developing a period-driven job
placement policy that greedily places jobs to minimize servers’
violation severity, i.e., the extent to which job resource usage
exceeds server capacity over time. We evaluate our models’
accuracy and period-driven placement policy on a publicly-
available industry job trace, and show that our policy yields
a lower violation rate, lower violation severity, and higher
utilization compared to an existing state-of-the-art policy based
on predicting only peak usage.

In this paper, we mainly focus on periodic workload trace
analysis and scheduling, especially for forever-lived applica-
tions in data centers, such as virtual machines (VMs), web
servers, and database servers. However, there are tons of short-
lived jobs that are too short to exhibit periodicity in data
centers, [7] and [19] show this lifetime distribution analysis.
Even though the core-hours are short, but the quantity is
huge and they may also have high peak usage during short
periods, which impacts data center throughput and utilization.
To address this problem, in the future work, we will develop
an integrated Al-based scheduler for batch scheduling that
handles both long-lived and short-lived jobs to further increase
resource utilization in data centers.
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