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Greenhouse gas emissions from the residential sector represent a large fraction of global emissions and must
be significantly curtailed to achieve ambitious climate goals. To stimulate the adoption of relevant technolo-
gies such as rooftop PV and heat pumps, governments and utilities have designed incentives that encourage
adoption of decarbonization technologies. However, studies have shown that many of these incentives are
inefficient since a substantial fraction of spending does not actually promote adoption. Further, these incen-
tives are not equitably distributed across socioeconomic groups. In this article, we present a novel data-driven
approach that adopts a holistic, emissions-based, and city-scale perspective on decarbonization. We propose
an optimization model that dynamically allocates a total incentive budget to households to directly maximize
the resultant carbon emissions reduction — this is in contrast to prior work, which focuses on metrics such as
the number of new installations. We leverage techniques from the multi-armed bandits problem to estimate
human factors, such as a household’s willingness to adopt new technologies given a certain incentive. We ap-
ply our proposed dynamic incentive framework to a city in the Northeast U.S., using real household energy
data, grid carbon intensity data, and future price scenarios. We compare our learning-based technique to two
baselines, one “status-quo” baseline using incentives offered by a state and utility, and one simple heuristic
baseline. With these baselines, we show that our learning-based technique significantly outperforms both
the status-quo baseline and the heuristic baseline, achieving up to 37.88% higher carbon reductions than the
status-quo baseline and up to 28.76% higher carbon reductions compared to the heuristic baseline. Addition-
ally, our incentive allocation approach is able to achieve significant carbon reduction even in a broad set of
environments, with varying values for electricity and gas prices, and for carbon intensity of the grid. Finally,
we show that our framework can accommodate equity-aware constraints to preserve an equitable allocation
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of incentives across socioeconomic groups while achieving 83.34% of the carbon reductions of the optimal
solution on average.
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1 Introduction

Many countries, regions, and cities in the world have set ambitious goals for decarbonization, e.g.,
net zero CO, emissions by 2035 or 2050 [104]. Any realistic climate scenarios to net zero by 2050
require deep reductions in both the energy usage and carbon emissions of buildings, industry,
and transportation as well as improvements in energy efficiency throughout the economy [75].
Residential buildings accounted for 22% of global energy consumption in 2020 [43], where a sig-
nificant portion is due to carbon-intensive energy uses such as the direct combustion of fossil fu-
els, such as natural gas for residential heating [49]. Furthermore, many fuel-based appliances and
heating, ventilation, and cooling (HVAC) systems are less energy efficient than their electric
counterparts [72]. Therefore, any reductions in the carbon emissions from the residential sector
can contribute significantly to the reduction of global emissions.

One of the most promising approaches to deeply decarbonize the residential sector is to electrify
energy demand, i.e., eliminate appliances and HVAC systems that directly emit carbon, and simul-
taneously deploy distributed energy resources (DER) such as rooftop solar and battery storage
to ensure a steady supply of carbon-free electricity [93, 97]. Improvements in energy efficiency for
many household appliances, such as heat pumps, and decreases in costs have made these technolo-
gies a safe and affordable option for a wide range of geographical regions and climate zones [24].
For instance, the cost of rooftop solar decreased by 65% between 2010 and 2020, and combination
solar and storage system level costs have decreased by 25% since 2016 [40].

While these decreases in cost, improvements in energy efficiency, and climate-friendly policies
have enabled many transitions, these benefits are still not affordable for people across all climate
regions and socioeconomic backgrounds.

There are existing incentives, in the form of rebates or tax credits, to promote electrification and
energy efficiency improvement. For example, in the United States, a federal solar Investment Tax
Credit (ITC) offers a 30% tax credit for rooftop or community solar systems installed from 2022
through 2032 [100]. There are similar state-level incentives as well. For example, Massachusetts
offers 15% of the installation costs as a tax credit ($1,000 max) with a sales tax exemption (6.25%),
New York offers 25% of the cost as a tax credit ($5,000 max), and New Jersey offers a generous net-
metering program [71]. There are additional federal incentives of up to 30% of the costs ($3,200
max) for energy-efficient appliance upgrades such as heat pumps, water heaters, and electric pan-
els [77]. However, these incentives are standardized at the national or state level, and do not ex-
plicitly account for variations in energy burden for communities and their socioeconomic back-
grounds, and often have prohibitive costs, e.g., the need to own the system outright. Such limita-
tions prevent many households from leveraging the incentives available to them, and therefore ex-
acerbate existing inequities. As a result, the current incentives neither maximize the reductions in
carbon emissions per dollar spent, nor do they distribute incentive budgets in an equitable manner.
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To tackle this problem, we present a novel approach that adopts a holistic, city-scale frame-
work for incentive allocation in residential sector decarbonization. We first present an optimization
model that maximizes the reduction in carbon emissions instead of simply maximizing the number
of installations, given a total incentive budget. Our initial model determines the amount of incen-
tive to offer to each household given a combination of information about their responsiveness to
incentives and resultant carbon emissions. However, in the real world, each household’s reaction
to incentives is not known to decision makers. To overcome this challenge, we leverage techniques
from multi-armed bandits to estimate human factors, such as a household’s willingness to adopt
new technologies given a certain incentive. We then leverage these estimates to optimize the de-
carbonization plan holistically at a city-scale. Finally, we extend our dynamic incentive allocation
approach to incorporate equity considerations by ensuring the desired allocation of incentive bud-
get to specific socioeconomic groups.

Our proposed approach occupies a unique space within the broader literature that has explored
various aspects of residential sector decarbonization. Many prior studies investigate the efficacy of
various incentive mechanisms such as rebates and tax credits [69], highlight the racial and income
disparities in their adoption [33, 53], or understand the mechanics of incentive acceptance and
devise better incentive structures. However, most of these studies optimize incentive design for
the rate of adoption, which does not always lead to maximum reductions in carbon emissions
(details in Section 7). Finally, our work also significantly extends prior work on residential heating
decarbonization that either estimates bounds on reductions in carbon emissions [97, 109] or takes
the central perspective of a utility in dictating which homes to transition [57].

In designing our dynamic incentive allocation approach, we make the following contributions.

(1) We formalize the task of incentive allocation as an optimization problem with the objective
of maximizing carbon emissions reductions, rather than adoption. Given knowledge of each
household’s responsiveness to incentives, our approach yields the maximum reduction in
carbon emissions for a given incentive budget.

(2) We incorporate a learning-based approach to estimate human factors in incentive alloca-
tion, specifically household responsiveness to incentives, which is not typically known in
real-world scenarios. Our approach involves a two-stage process: in the surveying stage, we
adopt a contextual offline multi-armed bandit model [50, 59, 86] with unique context, arm,
and reward designs specifically tailored for deep decarbonization. For this stage, we propose
a contextual lower confidence-bound method that is robust when faced with limited survey
data. Then, in the offering stage, we leverage the learned best-expected carbon reduction
per monetary incentive alongside the aforementioned incentive optimization technique to
identify good incentives at a city-scale. Our approach can incorporate arbitrary cost mod-
els that households might use to inform incentive decisions. We also extend our model to
incorporate equity considerations in its incentive allocation approach.

(3) We use real energy usage data from 3,000+ homes in a small city in the northeastern United
States to evaluate our approach. Our experimental results demonstrate that our proposed
approach achieves up to 37.88% higher carbon reductions than the status-quo baseline, e.g.,
utility companies and governments, and up to 28.76% higher carbon reductions compared
to a simple heuristic baseline. Further, our approach achieves an average of 83.34% of the
optimal carbon reduction (with knowledge of incentive responsiveness) even under equity
constraints, demonstrating that it is possible to achieve both carbon reduction and socioeco-
nomic equity. Additionally, our incentive allocation approach is able to achieve significant
carbon reduction even in a broad set of environments, with varying values for carbon inten-
sity of the grid and gas and electric prices.
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2 Background

In this section, we present some background and discuss challenges for our incentive optimization
design approach.

Natural gas HVAC and appliances. Natural gas-based HVAC systems use the combustion of
natural gas to generate heat for space heating. In other gas-powered appliances (e.g., stoves, wa-
ter heaters), the generated heat is directly used to cook food or heat water. Since natural gas is
cheaper than electricity in most locations [78], the operating cost of natural gas-based HVAC and
appliances is often lower. However, they require significant upfront investment and are hazardous
due to potential methane leaks, carbon monoxide leaks, and health concerns [44]. Net-zero targets
set by various jurisdictions, the availability of superior electric alternatives, and the increasing cost
of maintaining a gas distribution network with a dwindling customer base suggest that societies
will eventually transition away from gas-powered HVAC systems and appliances.

Replacement appliances for electrification. Electric heat pumps offer an energy-efficient al-
ternative to gas-based furnaces for heating during the winter and cooling during the summer. They
leverage heat transfer instead of heat generation and can deliver up to 7 times more heat energy
than the electrical energy they consume [51, 72]. While electric heat pumps have been around for
decades, their heating performance in cold climates, such as in the northeast United States, has
been poor. However, recent technological improvements have made their deployment viable even
in colder climates. For other appliances, such as water heater and stoves, electric alternatives are
efficient and have lower purchase prices. However, due to diversity in performance (e.g., radiant
vs. induction stoves), adoption of these alternatives must overcome hurdles of public perception
and existing expectations of electric appliance performance.

Electric grid. Electric power is traditionally generated at large power plants, often powered by
fossil fuels such as natural gas, oil, and coal [38]. The generated electricity travels long distances
through transmission networks and is distributed to individual homes using a distribution net-
work. This traditional grid poses two key challenges to electrification for decarbonization. First,
added demand on the grid due to electrification can trigger expensive upgrades in the electric-
ity distribution and, in some cases, transmission networks [31, 73]. Second, the electric grid is
still evolving to handle large-scale intermittent and inverter-based resources, such as solar and
wind [91]. Therefore, the electric grid may not be entirely carbon-free in the near future [74], pre-
venting full decarbonization of the residential sector despite electrification. A holistic decarboniza-
tion of the residential sector should be cognizant of these challenges and target cost-effective deep
decarbonization.

Residential solar and battery storage. Electrification of the residential sector coupled with
co-located solar and battery storage systems offers a cost-effective solution for deep decarboniza-
tion [97]. Solar and battery storage systems are cost-effective as they do not require fuel and have a
long life (25 years for solar and 5-15 years for batteries). Residential solar projects can be installed
without battery storage to reduce cost, although avoiding curtailment would require demand to
be larger than generation at all times, or the ability to backfeed excess energy to the grid. How-
ever, many states in the United States do not have attractive net-metering programs, and some
are proposing high grid access charges [28]. Furthermore, a solar system alone may still require
grid upgrades, as it cannot reduce the peak demand for electric heating (e.g., at night or during
inclement weather). On the other hand, a solar system with appropriately sized storage can miti-
gate added electricity demand, allowing a deep decarbonization. Note that for the purposes of our
work, we do not consider a homeowner’s ability to backfeed excess solar energy to the grid, nor
do we consider the possibility of shared battery storage.

ACM J. Comput. Sustain. Soc., Vol. 3, No. 3, Article 22. Publication date: July 2025.



Dynamic Incentive Allocation for City-Scale Deep Decarbonization 22:5

The social cost of carbon. The Social Cost of Carbon (SCC) assigns a dollar value to the future
net social, economic, and physical impacts of 1 metric ton of carbon [39]. In the United States,
this value is estimated by the Environmental Protection Agency (EPA) through projection
modules for emissions, population, income, climate, damages, and discounting based on the latest
developments in the relevant fields [39]. A discounting module is used to determine future climate
damages occurring during a specific year of emissions and is based on a specific dynamic discount
rate calculated with the Ramsey discounting formula. Due to uncertainty regarding the starting
rate, the EPA has provided calculations of the SCC based on 3 different likely near-term target
rates, 1.5%, 2%, and 2.5%, which provide a high, medium, and low estimate for the SCC. For the
purposes of our work, we use the SCC calculated with a near-term target rate of 2%.

3 Problem and Preliminaries

In this section, we formulate the incentive allocation problem with the objective of finding an
allocation that maximizes the reduction of carbon emissions subject to a budget constraint.

We present the problem assuming that each household’s willingness to adopt the decarboniza-
tion plan given a certain incentive is known a priori to the incentive designer (we relax this assump-
tion in Section 4). We also motivate the dynamic incentive design problem by analyzing financial
“break-even” points for the deep decarbonization retrofit package.

3.1 Problem Formulation

We first present a general optimization framework that assumes knowledge of key problem pa-
rameters in advance.

We denote the set of households in, e.g., a city by H, and let n = |H|. We let E® represent the
carbon intensity of the electric grid, and G is a constant describing the carbon emissions due to
natural gas combustion (in grams of CO, emitted per unit of energy).

Suppose the incentive designer has a total budget of B (e.g., in USD). An incentive allocation 1 is
a vector in R”, where the A term of I is the monetary incentive offered to house h € H. Then,
the space of valid incentives is described as 7 := {I € R" : ||I||; < B}.

Let A(x 1y denote the conditional probability that house h € H adopts the deep decarbonization
package under incentive allocation I. For brevity, we will refer to Ay as an acceptance function
that yields this probability. The objective of the incentive designer is to maximize the objective
function subject to budget constraints. Formally, we define the offline optimization problem as

max heZ(HA(hu) [(g(h)G® + [e(h) — ¢’(h)] E***) x SCC], (1)
s.t, [Tl < B. (2)

Here, g(h) denotes the reduction in home gas usage. e(h) and e’(h) denote the yearly grid electric
usage of house h before and after the deep decarbonization package is installed, respectively. Note
that this captures any excess electricity that must be pulled from the grid beyond what solar and
storage supply. The SCC value is a constant that represents the Social Cost of Carbon for the given
year during which this optimization problem is considered.

In the setting where A,y € {0, 1} and is known for each house, we can reduce this optimization
to a knapsack problem as follows: Let wy, be the minimum value of I, (i.e., the incentive for house
h) such that Ay = 1. Let vy, be carbon emissions reduction ((g(h)G %2 + [e(h) — e’ (k)] E*%)x SCC).
Then we have the following knapsack problem: max }’j,cq Xpvp S.t. D peq xpwn < B, where the
value and the weight of each “item” are vy, and wy, (respectively), and x; € {0, 1} is a decision
variable indicating whether an incentive is paid out to house h.
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Equity component. In this section, we describe the equity constraints that we will impose on the
above formulation in Section 6.3. Suppose the incentive designer would like to specify an equitable
incentive distribution across M groups (e.g., socioeconomic groups). Instead of a single budget B,
we define M budgets such that each B, for m € [M] corresponds to the total budget allocated to
the m'™ group. Then, the constraint in Equation (2) is replaced with M constraints, such that the
components of I corresponding to group m (denoted by I,,) must be less or equal to B,. Formally,
we have

s.t., |[Inlli £ By Vm e [M]. (3)

Decarbonization over time. In the case where the incentive designer must offer incentives over
the course of many years, and is only able to access a fraction of the budget B each year, we describe
a modification to the optimization in Equations (1) and (2). In this scenario, the incentive designer

projects the value of the carbon emission reduction over a number of years Y. For a given year

yey, vgly) represents the projected carbon emission reduced for home h given that the home is

decarbonized during year y. Thus, for this scenario, for each year y € Y, we use a modification of
Equation (1) as follows:

Y
COZ _ p/ COZ
max 3 Ao | ) (9(G + [elh) = € ()] E) SCC, | @
heH, =y
st V0 < By, 5)

where SCC; is the value of the social cost of carbon for a given year t, H, are the homes in H
that have not yet accepted an incentive by year and the value of an incentive allocation vector I,
is determined, where ||I,[|; < B/y .

Equity constraints on decarbonization over time. In this section, we impose equity constraints
on the optimization framework presented in above with Equations (4) and (5). We describe two
different equity constraints, which we refer to as Strict Equitable Allocation and Relaxed Equitable
Allocation. Strict Equitable Allocation ensures that the yearly budget is split equitably across M
groups. Thus, the constraint on the yearly budget is similar to the constraint given in Equation (3).
Specifically, it is

Gl < B v e [M], (©)
where BEZ) is the portion of the budget from year y allocated to group m, and 1§£{> is the incentives
allocated for group m during year y. Relaxed Equitable Allocation relaxes the constraint that a
portion of the yearly budget BY) must be allocated to a group m € M. Rather, it splits the overall
budget B across the M groups just as in Equation (3). The incentive designer is still only able to
use a total of B/Y per year, but the maximum that can be spent on each group m over the total
number of years Y is B,,. That is,

Y
DTN < B Vm e [M]. ()
y=1

Where Y is the total number of years, B,, is the total budget that group m can use, and I(,fl’) is
the incentives allocated to group m during year y. In the offline formulation, it is assumed that
the acceptance functions Ay are known to the incentive designer. This is an unreasonable as-
sumption in practice, and is addressed in Section 4. We next discuss a model from the literature
on cost/benefit analysis that will attempts to quantify whether a given household will “opt-in” to
a decarbonization plan for a certain incentive. We use this model to motivate the need for external
incentives.
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3.2 Modeling Likelihood of Adoption

Prior work on decarbonization technologies, such as rooftop PV and air source heat pumps, finds
that the likelihood of a household adopting technology is a function of the return on invest-
ment (Rol) [11, 16, 53, 84, 95, 112], where returns refer to the cost savings after adopting the
decarbonization technology. Since our optimization formulation requires a definition of the accep-
tance function, A p), for each house h € H, we leverage prior work to devise a cost model that
may inform a hypothetical household’s decision to adopt a decarbonization package when offered
with a certain incentive. To motivate the need for incentives, we analyze the financial “break-even”
points for the households in our data set (details in Section 5.1), as without them, the investment
outweighs the expected returns for a large fraction of households, prohibiting adoption.

Net Present Value (NPV). A standard method for break-even analysis in the literature is termed
NPV, which recognizes that a monetary benefit in the future is worth less at present due to inflation,
interest rates, and other factors [58]. This effect is captured using discount rate, a factor specifying
how much future returns are worth at present. The net benefit of the conversion is the NPV of the
future benefits minus the conversion’s cost. These benefits include the money saved on annual gas
and electric bills during the recovery period T (in years). For a given house h, the net benefit can
be calculated as

b(g(h), e(h)) — cp(e’(h))

(1 + discount_rate)*

T
NetBenefit(h) := » (c co(h).
=0

Where ¢, (-) indicates the annual cost in dollars at the beginning of the time window considered,
i.e., cp(e(h),g(h)) is the annual cost of the gas and electricity of home h before implementing a
decarbonization package, and c.(-) indicates the annual cost of electricity after implementing the
decarbonization package. If the NetBenefit quantity is positive, the future benefits outweigh the
cost, and vice versa. The impact of an incentive given to a household, I, can be captured by
substituting —c.(h) with +I, — c.(h). We set A p) = 1 if If I, leads to a positive NetBenefit.

A reasonable choice for the recovery period T should be less than or equal to the expected
lifespan of the decarbonized energy system (i.e., how long it will last without replacing any com-
ponents). For instance, residential lithium-ion battery systems typically have a lifespan between
5-15 years [26] — thus, in our analysis, we set T to denote a “break-even” threshold between 5-15
years.

NetBenefit values are highly dependent on the discount rate values, which are determined by
inflation, electricity price growth, and prevailing interest rates. Thus, the economic situation of
a homeowner’s country will contribute greatly to their household’s “break-even” point. In imple-
menting our NetBenefit model, we consider two discount rate scenarios. In the first scenario, we
assume moderate inflation and electricity growth rates. In the second scenario, we assume high
inflation and a high electricity growth rate. In the U.S., estimates for discount rates are based on
historical data for federal funds rates, inflation rates, and increases in electric prices. The moderate
electricity price growth rate is based off of a historical regional electricity growth rate of 10% [55],
the federal funds rate is assumed to be 5%, and the moderate inflation rate, which is the average
inflation rate across 2013 to 2019, is assumed to be about 1.5% [2]. For the second discount rate, the
inflation rate is assumed to be 8%, based on the average inflation rate in 2022, and the electricity
price growth rate is assumed to be 11% based on the average electricity price growth rate in 2022
in the United States.

In Figure 1, we observe that for a NetBenefit cost model under the moderate discount rate sce-
nario, 96% of homes in our dataset (those on the left-hand side of the black line) will not “break-
even” within five years of adopting a decarbonization package, 70% will not break even within 10
years, and 33% will not break even within 15 years (data and methodology explained in Section 5).
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Fig. 1. A representative break-even point illustration under the NetBenefit model with a 5, 10, and 15 year
payback period; 96% of houses fail to break even with the installation costs of decarbonization within 5 year
payback period, 70% of houses fail to break even within 10 year payback period, and 33% of houses fail to
break even within a 15 year payback period.

This implies that most households will not be financially motivated to decarbonize under the sta-
tus quo, motivating the need for a strategic incentive allocation to households that reduces the
upfront financial burden of a deep decarbonization package.

While the cost model discussed here is grounded in the relevant literature, it is also known [14,
17, 99, 114] that the true behavior of homeowners when presented with decarbonization options
and incentives is not easily predictable by simple models assuming “rational actors”. Thus, in the
next section, we describe our approach to essentially estimate A, ry for each house h € H, rather
than attempting to model them directly. We use the cost models discussed above as an approxima-
tion of true behavior throughout our experiments.

4 Survey Learning

In this section, we describe our approach to generalize the solution design presented in the pre-
vious section (i.e., with knowledge of each household’s incentive response) to the more practical
case of unknown acceptance functions.

We propose a two stage approach where in the first stage, we leverage algorithmic foundations
from offline multi-armed bandits to survey a subset of households and estimate acceptance thresh-
olds. In the second stage, we then use these estimated thresholds in the solution design described
above to choose households throughout the city that should be incentivized.

4.1 The Surveying Stage

A traditional survey approach for understanding community attitudes toward decarbonization
technologies may present households with different options and collect responses. In the case of
gauging appropriate financial incentives for adopting decarbonization technologies, an incentive
designer may present households with “tiers” of financial incentives and ask them for the minimum
incentive they would accept. Such an approach is unsuitable for the application we consider, as
it would not elicit truthful responses from the households. Thus, we must consider a “limited
information” setting, where households are not given multiple options to choose from. Instead of
presenting each household with several options, our proposed survey design offers each household
a decarbonization package and a specific monetary incentive. Each household can then respond
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to this offer with a simple “accept-reject” response. The incentive designer’s role is to choose
a decarbonization package and incentive to offer and can observe the household’s accept-reject
response to that specific offer. This exactly mirrors the concept of bandit feedback, and by nature,
is more likely to result in truthful responses because survey respondents cannot see alternative
incentive offers to the one that they are presented with. For example, with our survey design, the
household cannot select the highest possible incentive and claim this as the minimum they would
accept.

The contextual offline bandit model. We frame the surveying stage described above as a
contextual offline bandits problem [50, 59, 65, 86], where N survey responses are collected from
different households in parallel. In the general contextual offline bandits problem, the learner must
contend with contexts that influence the reward associated with each of the K arms (i.e., actions).

The learner’s objective is to determine the optimal arm for each context when given N examples
to learn from, where each example consists of an arm, a context, and the resulting reward.

In our setting, the context of each household A refers to reasonably accessible information about
each household in the city that can be obtained by the incentive designer. The offers that the
incentive designer can send to households are captured by the K arms of the contextual bandit
algorithm, each of which corresponds to a unique (decarbonization package, incentive) pair. Finally,
the reward of each offer is defined as the carbon reduction (if the offer is accepted) divided by the
amount of incentive. We describe each of these in detail below.

To construct a “data set” of examples (i.e., survey responses) for the learner, we select a subset
of N households to receive surveys, where N < |H|. As mentioned above, each household h has a
context that is recorded. Each survey sent out includes an offer that is uniformly randomly chosen
from the K arms.!

Context design. In our setting, inspired by the cost model described in Section 3.2, we use three
variables to describe the context of each household, namely, median income, yearly gas usage, and
yearly electric usage. We include these variables because they can be can be obtained by the in-
centive designer from a source such as publicly available census data or utility data. Additionally,
these variables are important in determining the appropriate decarbonization package and incen-
tive. The yearly gas usage determines how much energy the heat pump will need to consume over
the year to produce an equivalent amount of heat. The yearly electricity load determines how much
existing electricity demand would need to be supplied by the solar PV systems and storage. Both
of these factors combined determine the sizing of the solar PV system and storage, and therefore
influence the cost of decarbonization. To discretize the possible contexts, we split each variable by
quantiles into 5 groups, such that each household falls into one of C = 5* = 125 possible contexts.

We note that including variables such as median income can also help facilitate equity-aware
optimization of incentives as in [57, 109], by allowing the incentive designer to target surveys and
eventual incentives toward neighborhoods which have historically been disadvantaged by existing
energy systems [10, 102].

Arm descriptions. We design K arms, where each arm k € [K] corresponds to a simultaneous
choice of decarbonization package Dy € D (e.g., full appliance replacement vs. just heat pump
installation) and monetary incentive I € R,. We discretize the range of monetary incentives into
5 tiers based on quantiles of the actual payoff thresholds computed using the cost model mentioned

INote that if the incentive designer has some prior information about which “arms” may be the optimal incentive scheme,
they can introduce bias in this process and generate survey offers that provide more coverage of the likely-optimal arms.
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above. This is in contrast to the full information setting, where the cost models prescribe an exact
amount of money at which the household should accept an incentive.

Reward formulation. For the j* survey response from N total responses, we say that the con-
text of the household is given by c; and the offer is given by k; € [K], with associated monetary
incentive I, and decarbonization package Dy, . The feedback received from the household is en-
coded as a reward r; as follows:

If the household rejects the offered incentive, the realized reward is r; = 0. If the household
accepts the offered decarbonization package Dy, and monetary incentive I, the realized reward
rj is computed as the ratio of the carbon reduction to the monetary incentive, i.e.,r; = R;/ ij ,where
Rj = R(Dy;, cj) represents the estimated yearly carbon reduction based on incentive designer’s data
for all households in the context ¢; who adopt decarbonization package Dy;. To this end, we denote

the offline survey data set as Do = {(c}, k;, rj)}jj\il.

4.2 The Offering Stage

In the second phase, the incentive designer offers decarbonization packages and incentives to each
household in the city that exactly correspond to the best-expected payoff (in terms of dollars per
carbon reduction) learned from the survey results. To learn the best incentives, we leverage algo-
rithmic foundations from the offline multi-armed bandits literature, described below.

The Contextual Lower Confidence Bound algorithm.

The goal of using a contextual bandits algorithm is to learn the expected rewards of each arm,
with the specific goal of identifying an “estimated optimal arm” (consisting of a decarbonization
package and monetary incentive) for each household context in the community. We adopt the
Contextual Lower Confidence Bound (CLCB) algorithm, which operates as C independent LCB
algorithms [59], each corresponding to a context ¢ € [C]. Given the offline survey data set Do =
{(cj, kj, rj)}jj\i 1» CLCB tracks both the number of times each arm k is pulled within a given context
¢, denoted by Ty, = ij\il I{c; = c,k;j = k}, and the empirical mean reward [ . = Zjl\il Hc; =
c,kj = k}rj/Tg ¢ if T, . > 0 and fix . = 0 otherwise. The LCB value for each arm k € [K] and
context ¢ € [C] is then computed as

R log N
yk L= max {,Uk,c -« Tg ,0} , (8)

- k,c

where [ . represents the predicted reward (e.g., carbon reduction per dollar of incentive), and
log N
Tk, e
plied to under-explored arms. Since the survey data is pre-collected, with no possibility of further
exploration, CLCB emphasizes well-explored arms while penalizing those with limited responses
by reducing their predicted reward. This conservative approach enhances robustness, especially
when working with limited or unevenly distributed survey data.

o reflects the uncertainty in the reward estimate, with @ > 0 controlling the penalty ap-

To quantify the number of offline data needed to find out good arm k(c) that is as close to the
optimal arm k*(c) for each context ¢, we give the following analysis to bound the number of survey
responses N. Based on [86], we assume an offline dataset {(c;, k;, rj)}jl\i1 is i.i.d. generated with

context ¢; and arm k; following distribution D. Denote data coverage C* = max, W’ where
k*(c) is the optimal arm for context c. In the survey stage, an upper bound of O(%%(N)) on sample

size guarantees, with probability 1 — O(ﬁ), that the LCB algorithm finds an arm (decarbonization
package and incentive) within € of optimal k*(c) for any c. This theoretical guarantee comes from
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the following derivation:

(a)
Hir(ehe = Hiene = Wkt(e)e = 1 )+ (gk*mc - g,;(c)’c) + (E,;(C)J ~ Hiene)

(®)

< Hik*(c),c — Ek*(c),c

() [2logN () 4log N (&) [4C*log N (f)
< < SA/—— =< ¢
Tk*(c),c N - D(C, k*(C)) N

, inequality (b) is because the

k*(c),c

where inequality (a) is due to adding and minus terms Fevone Piione

second and third terms are non-positive by inequality 8 and K, being a high probability lower
—K,C

bound of p . according to Hoeftding’s inequality when setting & = 1/+2, inequality (c) is due
to the same reason that K, being a high probability lower bound, inequality (d) holds due to
multiplicative Chernoff bound when N > 8C* log N > 8log N/D(c, k*(c)), inequality (f) holds due
to N = 4C*log N/ 2,

Offer construction. Given estimates of the best incentives provided by the LCB technique, the
offering stage proceeds as follows: Each household h with context c, is presented the decarboniza-
tion package Dy, and the incentive Iy, , where kj, = arg max¢[x] K, is the optimal offer learned

Zken

during the survey phase. Once this proposal is sent, house h responds with a decision, i.e., whether
they accept (D, ,Ix,) or not (non-response is interpreted as a rejection). We denote H, € H as
the houses that accept this proposed incentive.?

Given H,, the incentive designer sets a budget B that they are willing to spend on the cur-
rent set of incentives, where B < ;¢4 If,. Under this budget constraint, they compute a fi-
nal set of decarbonized houses H* by solving a knapsack problem over houses H,, i.e.,, H* =
ArG MAXH CH,:Y ey Iy, <B > heH Vh, Where vy, is the (known) carbon reduction of house h, accord-
ing to the incentive designer’s data. Note that by solving this knapsack problem, the incentive
designer can exclude those houses that achieve small carbon reductions relative to the expendi-
ture required to incentivize them. Furthermore, to accommodate equity constraints, we can change
the budget constraint B to M constraints as in Equation (3) and solve a new optimization problem
over H,. The final incentive expenditure is I, = I, if h € H* and I, = 0 otherwise.

5 Experimental Setup

In this section, we describe our experimental setup, including energy usage data sets, carbon in-
tensity data, census and property data, cost models, and algorithm implementations.

5.1 Data Sets

Household energy use. We use natural gas and electric consumption data for 3,168 individual
housing units in a small city in the northeastern U.S., which spans all of 2020 and provides a
representative snapshot of usage across seasons. Electricity consumption data is provided at a
5-minute granularity, while gas consumption is at a one-hour granularity.

Grid carbon intensity data. We obtain historical grid carbon intensity data via Electricity
Maps [67] for five grid regions in the U.S., which include Bonneville Power Administration

2Since the incentives are discretized, it is sometimes the case that the lowest tier of incentives is nominal, meaning that the
survey estimates predict that home h does not need an incentive to accept a decarbonization package. In the case that I,
is this lowest tier, we assume that home h is offered the decarbonization package resulting in the highest possible carbon
reduction rather than Dy, .
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(BPAT), California ISO (CAISO), ISO New England (ISO-NE), Pennsylvania-Jersey-Maryland
(PIM) interconnection, Pacificorp East (PACE) and South Carolina Public Service Authority (SC).

This data provides each grid’s hourly average carbon intensity, expressed in grams of CO, equiv-
alent per kilowatt-hour (gCO,eq/kWh). These regions represent a variety of grid generation mix
scenarios, e.g., BPAT represents a highly clean grid powered by hydropower, whereas SC represents
a dirty grid fed mostly by coal and gas. Other regions fall in the middle, and their ordering above
represents their order in terms of yearly average carbon intensity.

Census data. We use U.S. Census Bureau reports to get the basic socioeconomic characteristics
of the households in our dataset [22]. We classify neighborhoods as low, medium, and high in-
come using their census-reported median income, an approach used by prior work on equitable
residential decarbonization [57, 109].

Solar potential data. For each household in the data, we use the Solar-TK toolkit [12] to obtain
per-building solar potential. The toolkit estimates the output of a solar installation (with given
parameters) at the given location over the course of an entire year.

Social cost of carbon data. The values used for the calculation of the Social Cost of Carbon are
derived from the report titled “EPA Report on the Social Cost of Greenhouse Gases: Estimates
Incorporating Recent Scientific Advances” from United States Environmental Protection Agency
from 2023 [39]. The values are based on the emission years 2020 through 2029.

5.2 Cost Modeling and Implementations

Cost modeling. We estimate the cost and sizing of equipment needed for each household as fol-
lows. A solar installation is sized based on the energy demand for the household and the available
roof area. The battery storage is sized to store the maximum surplus solar, i.e., solar generation mi-
nus daytime demand. The solar and storage system installation costs are assumed to be $2,002 USD
per kW and $1,047 USD per kWh, respectively. These costs are based on current average costs after
federal and state tax credits in the area under study [8, 115] and include materials and labor costs.

An air-source heat pump retrofit is sized for each household by converting the current gas usage
to an equivalent thermal output, as in [57]. We estimate the electricity demand in kWh needed to
generate the same thermal output, using an ambient temperature-dependent model for heat pump
coefficient of performance (COP), as in prior work [54]. To estimate the installation cost, we
find a household whose usage is approximately the median amongst households that use natural
gas for heating. For this household, we set the installation cost for a high-efficiency heat pump
system to the industry average of $5,250 USD [34]. We estimate the installation cost for other
households by scaling the benchmark cost proportional to the gas usage, e.g., the heat pump for a
household with gas usage 3x the median will cost $15,750 USD.

We use natural gas usage in summer months as a proxy for the presence of non-heating related
natural gas appliances, such as a water heater, based on prior work [57]. The replacement cost for
a 120V heat pump water heater is set to the industry average after rebates, $1575 USD [1]. We con-
sider two decarbonization packages: a “just heat pump” option, where only the portion of natural
gas used for home heating is replaced by an air-source heat pump, solar PV installation and bat-
tery, and a “full appliance replacement” option, where natural gas usage is entirely eliminated and
all gas-based heating and appliances are replaced with electric appliances, air-source heat pumps
as well as a solar PV installation and battery. The carbon savings of each of these decarbonization
options are calculated using a simulation of real-world electrcity and gas consumption data for
each home over the course of a year, as well as a battery and solar PV system model. Note that the
battery model is simple and does not account for storage inefficiency.
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In our experiments, we set a natural gas price of $1.160/CC and an electricity price of
$0.14072/kWh, unless stated otherwise. These values incorporate the cost of maintaining a gas
and electric meter and represent the actual prices in the city under analysis [7].

Algorithmic implementations. We implement incentive allocation schemes in Python as fol-
lows. We use numerical optimization methods provided by SciPy [107] to compute the optimal
solution to the problem summarized in Section 3.1, leveraging perfect knowledge of the accep-
tance functions. This gives an upper bound on the carbon reduction achievable for a given budget
if, e.g., the preferences of all housing units are known exactly to the incentive designer. For our
learning-based incentive allocation, we implement the contextual LCB algorithm [9] described in
Section 4. For each cost model and payback period, we run a preliminary “survey phase”, which sur-
veys N random housing units (unless otherwise specified, N = 1, 000). The survey phase produces
a data set that is used to estimate the optimal “arm” (incentive) for each of 125 contexts. These
estimates are then used to offer and allocate incentives according to the description in Section 4.2.
When the experiment-prescribed budget is large, it is sometimes the case that the initial round of
accepted incentives (i.e., H,, see Section 4.2) does not take up the entire budget. In this case, we
send an extra round of incentives. In this extra round, the remaining households are each offered
an incentive that is one “tier” larger than the optimal incentive learned by the LCB algorithm (re-
call that the incentives are discretized into 5 “tiers” during the survey stage, see Section 4.1). We
repeat this process a second time if the budget is not fully used after the first additional round of
incentives. We then solve the knapsack problem to select between the households that accepted
any of the three rounds of incentives.

6 Experimental Results

In this section, we evaluate our learning-based dynamic incentive framework termed “Bandit In-
centive Allocation” that leverages data-driven insights. We include three baselines in our evalu-
ation. The first baseline is the “Status Quo” baseline, which assumes no incentives beyond those
already embedded in the cost models and includes homes that would adopt decarbonization tech-
nologies even without additional incentives. This baseline represents the lower bounds on carbon
emission reductions if no additional incentives are offered. The second baseline is the “Optimal In-
centive Allocation” baseline, representing the approach in Section 3.1 that assumes full knowledge
of each household’s willingness to accept incentives. This baseline represents the upper bounds
on carbon reduction given the human factors and decarbonization packages considered in our ex-
perimental setup. The final baseline that we include is the “Equal Incentive Allocation” baseline,
which assumes that every home in the community will receive an equal portion of the budget
as an incentive, in addition to the incentives already embedded in the cost model. Note that the
Equal Incentive Allocation strategy does not utilize any knowledge of human factors. This baseline
motivates the need for a learning-based incentive allocation approach.

The gap between the Equal Incentive Allocation and the Optimal Incentive Allocation represents
the benefits of allocating incentives with complete knowledge of the human factors. Therefore,
the difference in reduction between our learning-augmented approach and the Equal Incentive
Allocation baseline shows the effect of incentives allocated with imperfect knowledge of human
factors; we term this gap as the imperfect incentive benefit. The gap between the optimal incentive
allocation and our approach quantifies the cost of imperfect knowledge of human factors; we term
this gap as imperfect knowledge cost.

We evaluate the decarbonization performance on a yearly basis using the average percentage
reduction in carbon emissions for all households in our data set, computed by dividing the carbon
emissions post-installation by the carbon emissions under no intervention, and measure the
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Fig. 2. The NetBenefit cost model with a modest discount rate of 5% for payback periods of (a) 5 years, (b)
10 years, and (c) 15 years. Our learning-based incentive model achieves an average of 14.47% higher carbon

reduction than the Equal Incentive Allocation strategy across all budgets and payback periods.
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Fig. 3. The NetBenefit Cost Model with a discount rate of 2% for payback periods of (a) 5 years, (b) 10 years,
and (c) 15 years. Our learning-based incentive model average of 11.88% higher carbon reduction than the
Equal Incentive Allocation strategy across all budgets and payback periods.

fidelity in enforcing equity constraints by comparing the incentive allocation across socioeco-
nomic groups.

6.1 Optimizing for Carbon Reduction

We first compare the decarbonization performance of various incentive allocation approaches un-
der budgets varying from $1 million to $10 million USD and payback periods of 5, 10, and 15 years.

We use the NetBenefit cost model with a discount rate of 5% in Figure 2, and a discount rate of
2% in Figure 3.

Both figures show carbon emissions reductions for all incentive allocation approaches. The Op-
timal Incentive Allocation and the Status Quo set the upper and lower bounds on the reduction
of carbon emissions, respectively. Under the Equal Incentive Allocation strategy in Figure 2, the
carbon reduction is roughly 3% when the payback period is 5 years. This is expected as even the
houses that benefit the most from decarbonization cannot recoup their investment quickly. As the
payback period increases to 15 years, the lower bound on savings increases to 74.91%.

Our proposed Bandit Incentive Allocation approach lies between the Optimal Incentive Alloca-
tion and Equal Incentive Allocation baselines for carbon reductions. The improvement in reduc-
tions as compared to the Equal Incentive Allocation reaches a maximum of 28.7% in a 5-year pay-
back period, 19.7% in a 10-year payback period and 9.3% in a 15-year payback period. We observe
that the imperfect knowledge cost (the gap between our approach and upper bound) increases as
the budget increases; it is 2.8% at a 1 million USD budget and 10.8% at a 10 million budget for a
5-year payback period. This shows that the knowledge of human factors significantly affects how
well the budget is utilized.

Figure 3 evaluates various approaches under a discount model corresponding to the high growth
rate in energy costs and inflation. We observe similar performance trends to the previous setup.
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Fig. 4. The effect of changing environments characterized by (a) gas price, (b) electricity price, and (c) carbon
intensity.

However, carbon reductions are higher in this scenario as more homes adopt decarbonization
technologies — this is because low discount factors means that future returns have a higher value,
tipping the cost-benefit ratio for additional households and resulting in a broader acceptance of
incentives.

We note that in a real-world scenario, it might be desirable for the incentive designer to survey as
few households as possible during the survey phase — in Figure 6, we evaluate the carbon reduction
of the Bandit Incentive Allocation strategy for a single budget of $5 million USD, varying the survey
size N. We observe that in our problem setup, at least 700 homes must be surveyed to reduce the
imperfect knowledge cost and approach the best possible carbon reduction.

6.2 Incentives under Changing Environments

We next analyze the effect of economic and generation parameters such as natural gas prices,
electricity prices, and carbon intensity. We set the budget to $5 million and the payback period to
10 years.

Figure 4(a) shows the carbon emissions reduction when the future natural gas prices range from
$0.7315/CC to $2.1/CC. We use the ISO-NE carbon intensity trace and the default electricity price
of $0.14072/kWh. We note that the “status quo” baseline intuitively obtains more carbon reduction
as prices go up since finances with existing tax credits and rebates favor the full appliance replace-
ment decarbonization package more often. The Bandit Incentive Allocation achieves an average
of 21.23% additional reductions on the Status Quo approach, an average of 13.85% additional re-
ductions to the Equal Incentive Allocation approach, and achieves up to 96.17% as much carbon
reduction as the Optimal Incentive Allocation.

Figure 4(b) shows the carbon emissions reduction when the future electricity prices range from
$0.077/kWh to $0.2853/kWh. We use the ISO-NE carbon intensity trace and the default gas price
of $1.160/CC. Unlike gas pricing, the Status Quo baseline obtains more carbon reduction as prices
go up due to the improved returns with fixed investment. The additional carbon reduction of our
learning-driven approach is 24.47% on average across all prices compared to the Status Quo, and
15.85% on average across all prices compared to the Equal Incentive Allocation approach. It also
achieves a maximum of 87.33% of the reductions of the Optimal Incentive Allocation approach.

Finally, Figure 4(c) shows carbon emissions reduction across five different grid carbon intensity
traces. The gas and electricity prices are fixed to $1.160/CC and $0.14072/kWh, respectively. We
observe a gradual decline in carbon reduction as the grids become “cleaner”. This is because de-
carbonization packages reduce grid reliance - transitioning away from a dirty grid makes a much
larger impact on carbon savings if the existing grid is dirtier. While the upper bound of carbon
reduction varies, the Bandit Incentive Allocation is able to achieve significantly higher carbon
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Fig. 7. Performance of equity-aware variants of optimal and learning-based incentive allocation approaches
using a discount rate of 5%. The equity-aware variant shows a comparable performance to equity-agnostic
implementation.

savings than the Status Quo baseline and the Equal Incentive Allocation approach, demonstrating
the efficacy of our approach across regions irrespective of electric grid characteristics.

6.3 Optimizing Equity and Decarbonization

As shown by prior work [20, 32, 84, 102], incentives can exacerbate socioeconomic inequities. In
this experiment, we first examine the equity impacts of our approach. Figure 5 shows the split
of incentive budget across the low, medium, and high-income groups, showing a clear deviation
from the equitable distribution. In the following experiments, we impose an equity constraint such
that the fraction of investment in the low, medium, and high income groups corresponds to 25%,
50%, and 25%. However, the relative ratio is configurable and can be set by an exogenous policy
adopting a different equity definition.

Figure 7 compares the carbon reduction performance of the Equity-Aware Optimal Incentive
Allocation scheme and the Equity-Aware Bandit Incentive Allocation scheme and their equity-
agnostic counterparts (shown in Figure 2). These incentive allocation schemes are also compared
against the Status Quo (NetBenefit cost model with a discount rate of 5%) and Equal Incentive
Allocation baselines. The Equity-Aware Optimal Incentive Allocation approach shows a slightly
lower carbon reduction across all budgets and payback periods, illustrating a manageable tradeoff
between carbon emission reductions and equity implications. We find that the Bandit Allocation
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Fig. 8. Carbon reduced over a span of 10 years including equity-aware strategies.

strategy is robust to the equity-aware constraints, as the Equity-Aware allocation is always within
1% of the Equity-Agnostic allocation across all payback periods. However, we do observe that
there is a smaller difference between these two Bandit Allocation strategies when the budget is
small. This is because as the budget increases, equity restrictions begin to impact the achievable
reductions by limiting the number of additional homes that can be selected.

6.4 Incentives Over Time

Offering incentives in stages over long periods of time has the potential to further exacerbate in-
equities, as homes that are decarbonized earlier are able to realize more benefits from decarboniza-
tion. In these experiments, we examine how our approach is impacted by the constraint described
in Equation (5), where incentives are offered over many years, but only a fraction of the budget
can be used yearly. For this scenario, we impose two different equity constraints (Strict-Equity
and Relaxed Equity) on the optimization problem, which are described by Equations (6) and (7).
We divide the total incentive budget equitably among high, middle and low income groups, such
that the fraction of the investment in the low, medium, and high income groups are 25%, 50%, and
25%, respectively. We use the NetBenefit cost model with a discount rate of 5% and payback pe-
riod of 10 years. We allow incentives to be allocated for a total of 10 years. We also use an Equal
Incentive Allocation strategy as a baseline, where the yearly budget is divided equally across all
homes that have not been decarbonized. Figure 8 compares the carbon savings of the Relaxed-
Equity Aware, Strict-Equity Aware, and Equity-Agnostic Bandit Incentive Allocation strategies,
as well as the carbon savings for their respective optimal upper bound and lower bound. We ob-
serve that the Optimal Incentive Allocation strategies all result in roughly the same carbon savings
(within a 1% difference of each other), with the Strict-Equity allocation resulting in the smallest
carbon savings out of all of the optimal schemes. This indicates that with perfect knowledge of
the incentives for each home, there is a minimal tradeoff between optimizing for equity and op-
timizing for carbon savings. Additionally, the Bandits Incentive Allocation strategies achieve at
least a 1% increase in carbon savings over the Equal Incentive Allocation baseline across all bud-
get amounts. As compared to the Equal Incentive Allocation baseline, the Equity-Agnostic strategy
achieves a maximum of 24.8% more carbon savings over the Equal Incentive Allocation baseline,
the Strict-Equity Aware strategy achieves a maximum of 8.6% more in carbon reductions, and the
Relaxed-Equity Aware strategy achieves a maximum gain of 24.25%. Intuitively, we find that the
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Fig. 9. Bandit Incentive Allocations to high, medium, and low-income homes during the first year of incen-
tives with an allocation budget of (a) 1 million USD and (b) 10 million USD.

Relaxed-Equity Aware strategy outperforms the Strict-Equity Aware strategy. Figure 9 shows the
split of the yearly budget between income levels for Equity-Agnostic, Strict-Equity and Relaxed-
Equity strategies after the first year of incentive allocation for a total budget. In Figure 9(a), it is
evident that the Equity-Agnostic and Relaxed-Equity incentive allocation strategies do not allocate
incentives perfectly equitably, with these strategies over-allocating incentives to medium-income
and low-income homes. This is because the budget allocated for high-income homes is insufficient
to offer acceptable incentives under all scenarios.® In Figure 9(b), where the budget is 10 million
USD, we see that the Equity-Agnostic and Relaxed-Equity incentive allocation strategies now over-
allocate to high-income homes. In contrast, the Strict-Equity Aware strategy allocates incentives
according to the specified distribution under both budgets. These results introduce a tradeoff be-
tween carbon and equity, where relaxing equity constraints leads to a less equitable allocation, but
more carbon savings.

7 Related Work

In this section, we review prior work that studies the effects of existing incentives, simu-
lates responses to incentive plans, and proposes new incentives toward general residential
decarbonization.

Effects of existing incentives. There have been numerous studies that investigate the real-
world effects of decarbonization incentive programs such as tax credits, rebates, grants, net me-
tering (i.e., feed-in tariffs) and renewable energy credit markets. Perhaps the most well-studied is
residential solar adoption [14, 18, 32, 33, 46, 53, 69, 83, 90, 102]. Matisoff and Johnson [69] review
state and utility incentives for residential PV in the United States, finding that point of sale rebates
are up to 8x more effective compared to tax credits worth the same amount. Other studies come
to similar conclusions, including [33, 53]. Sunter et al. [102] and Crago et al. [32] consider the dis-
tributional impacts of solar in terms of adoption and financial returns, respectively, finding racial
and income disparities.

Other studies have considered the effects of incentives on heat pump and battery storage adop-
tion [5, 6, 16, 20, 27, 34, 63, 94, 99]. A Norway-based case study finds that 54.2% of participants in
a subsidy program were “very satisfied” with heat pumps [16].

Interestingly, Davis [34] suggests that heat pump adoption is not well-correlated with income,
while Brown [20] find disparities along racial and income lines in battery storage adoption through-
out California.

3In the usual sense, giving more incentives to medium- and low-income homes would be considered equitable. However,
the purpose of this experiment is to show how well each strategy conforms to a desired distribution that has been deemed
“equitable”.
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Although they do not propose new incentive structures, these studies help contextualize the
landscape of incentives for residential decarbonization and influence our high-level approach.

Incentive simulations and proposals. Prior work also uses simulations to estimate the
adoption of new residential technologies based on existing or proposed incentives. Many find
that upfront subsidies encourage more adoption, including [23, 37, 48, 56, 66, 84, 95, 112, 114].
Others simulate the financial viability and effects of climates on heat pumps or battery stor-
age [4, 17, 29, 35, 37, 76, 82, 89, 108]. Some works raise questions about the payback period of
BESS systems in low-solar areas without additional incentives, including [52, 111, 113]. Others
simulate the potential of heat pumps, finding that both the economics and the decarbonization
potential depend heavily on e.g., electricity generation mix, pricing, and taxation [11, 42, 56, 84].

Other work uses a combination of simulation data, economic analysis, and empirical results
to propose new incentive structures for residential decarbonization technologies, including [21,
30, 45, 47, 64, 70, 80, 92, 101, 103, 105]. Most closely related to our work, Marinakis et al. [68]
develops an optimization-based model to design incentives for solar PV, heat pump, and BESS
combination systems, although they do not explicitly consider carbon reduction, instead focusing
on the adoption rate. Vimpari [106] suggest that energy efficiency subsidies should be allocated
into areas with lower housing prices, since low-income areas pay relatively more for energy. In
contrast to the above studies, our focus is on carbon reduction as opposed to adoption, which adds
a dimension to our analysis.

Mechanism design and learning. Our study draws on foundational work in mechanism design
and multi-armed bandits. In the field of mechanism design, our work is most related to dynamic
mechanism and incentive design, where the underlying agents (e.g., households) update their ac-
tion according to some unknown but learnable rules [15, 25, 79, 81, 85, 87, 88]. In the broad litera-
ture on multi-armed bandits, we mostly draw on the problem of offline contextual bandits, where
learners estimate the quality of actions by leveraging a pre-collected data set with contextual infor-
mation and make informed decisions in uncertain environments [3, 9, 41, 50, 59-61, 65, 86, 96, 98].
This problem has been extensively studied and finds applications in diverse domains, including
healthcare systems [13, 36], recommender systems [19, 61], and cyber-physical systems [62, 110].
This work applies offline contextual bandits toward the practical problem of allocating incentives
for decarbonization.

8 Discussion

To adequately address the problem of learning incentive allocations for deep decarbonization, it
was necessary for us to make assumptions about the problem. In this section, we summarize the
assumptions and limitations of this work.

In this work, explore incentives in the form of rebate. While there are other forms of incentives
that can be involved with the adoption of renewable energy technology that we do not study in
our work.

In the incentive acceptance model described in Section 3, we assume that the sole deciding factor
of whether a home accepts or rejects an incentive is the NetBenefit cost model. Calculating the
return on investment to get NetBenefit has been shown to be a strong indicator of the likelihood of
adoption in previous works on solar PV adoption and heat pump installation [11]. However, to our
knowledge, there is no prior work on adoption behaviors for the combination of solar installation,
heat pump and storage. Future work on the adoption behaviors for this combination can further
inform our incentive acceptance modeling,.

In Section 4.1, we make the assumption that the incentive designer can access some knowledge
about the usage of electricity and gas by home owners. In reality, this may not always be the case.
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Additionally, we assume that home owners will respond to incentives truthfully. Both of these
qualities may not always be true in a real-world scenario.

9 Conclusion

We present a novel data-driven approach for holistic dynamic incentive allocation for city-scale
deep decarbonization. We defined an optimization model that dynamically allocates a total in-
centive budget to households to directly maximize the resultant carbon emissions reduction and
leveraged learning-based techniques to estimate human factors, such as a household’s willingness
to adopt new technologies given a certain incentive. We evaluated our approach using a real data
set and showed that our learning-based technique significantly outperforms an example of status
quo incentives offered by a state and utility, achieving up to 37.88% additional carbon reductions,
and an average of 83.34% of the optimal solution carbon reduction even under equity constraints.
We also compared our method to a simple heuristic baseline and found that our approach achieves
up to 28.76% higher carbon reductions. Further, our incentive allocation approach achieves sig-
nificant carbon reduction in a variety of environments, with varying values for the grid carbon
intensity, gas prices, and electric prices. In future work, it would be very interesting to consider
how our approach applies to other residential sector decarbonization problems.
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