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Abstract—In this paper, we analyze lifetime maximization
problem of lead-acid batteries commonly used in small scale
Uninterrupted Power Supply (UPS) and distributed renewable
energy systems. The aging process of batteries in these systems
is a complex phenomenon and depends upon many factors. We
consider the most comprehensive lead-acid battery model that
is commonly known as the weighted Ah-throughput (Schiffer)
model and identify three key factors affecting the lifetime of
these batteries: 1) bad recharge, 2) time since last full recharge
and 3) the lowest state of charge since last full recharge. Each
factor depends on battery state of charge (SoC). An appropriate
weighted sum of these three factors dictating the battery life is
considered as optimization objective. The appropriate constrained
optimization problems for the two common scenarios are solved
and SoC-based charge/discharge algorithms are formulated. Sim-
ulation results show significant improvement in the lifetime of
lead-acid battery (more than 85% in some cases) as compared to
the traditional terminal voltage based charge control algorithms.

Keywords—Lead-acid batteries, UPS, intermittent grid, state of
charge (SOC).

I. INTRODUCTION

The need of energy storage devices, such as batteries,
pumped water storage, compressed air energy storage, super
capacitors and flywheels in power grids is rapidly increasing.
An economic report forecasts the global energy storage market,
for grid use only, to reach over 10billion USD in 2017 [1].
The choice of an energy storage technology primarily depends
on its suitability for a particular application, capital investment
and lifetime.

In this paper, we consider the use of batteries as energy
storage device in small scale Uninterrupted Power Supply
(UPS) and distributed renewable energy systems. The power
grids of several Asian and African countries such as India,
Pakistan, South Africa, Nepal, etc., lack the capacity to meet
load demand, which results in consistent power outages [2]
[3]. In these countries, domestic consumers generally install a
small UPS system (with an inverter and a lead-acid battery).The
energy storage capacity of the battery in such UPS systems
is sufficient to power up only few essential loads during the
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regular power outages [4]. Another small scale application of
battery as a storage device is with the intermittent distributed
renewable energy systems, e.g., solar photo-voltaic (PV) panels
in homes. According to US Department of Energy, growth in
solar PV capacity was around 64% between 2000-2013 [5]. In
such systems, batteries can be used to smooth out PV power
fluctuations and to store excess power for future use. Therefore,
efficient utilization of batteries is required to ensure an optimal
operation of these applications [6].

Different battery storage technologies are available in the
market that can be used with small scale UPS and distributed
generation systems. The two prominent battery technologies
include lithium ion (Li-ion) and lead-acid batteries'. Lead-acid
battery is a mature technology, while Li-ion is a relatively
recent technology. Li-ion batteries, such as, Tesla Powerwall
[7], are highly efficient, have high cycle life (maximum 10,000
cycles) but are extremely expensive (500 — 13008/ KWh).
Lead-acid batteries are relatively cheap (50 — 200$/ KW h)
and their efficiency is comparable to Li-ion batteries. However,
the cycle life of lead-acid batteries is relatively poor (maximum
1000-1200 cycles). Despite low cycle life, lead-acid battery
generally remains the first choice in many domestic applications,
mainly due to the low capital cost, wide availability and mature
technology [8], [9], [10]. Lead-acid batteries are also predicted
to remain cheaper than their alternatives for at least the next two
decades [11]. A lead-acid battery typically accounts for 15%
of the total capital cost of a small scale solar PV system [12],
while it accounts for 50% of the total capital cost of a small
scale UPS system [4]. The low cycle life of lead-acid battery
can result in its periodic replacements, therefore, improvement
in the lifetime of a lead-acid battery in these systems will
ensure a better payback for the consumers.

A. Related work

The aging process in a lead-acid battery that results
in capacity loss and its eventual replacement in UPS and
distributed renewable energy systems is a complex process.
The aging mainly occurs due to the following factors [13],
[14]:

e Corrosion of positive grid: The thickness of corrosion
layer around the positive grid increases with time, which

INickel-metal hydride (NiMH) and Nickel-cadmium (NiCd) battery tech-
nologies are not popularly used in the applications discussed in this paper due
to their poor efficiency.



results in decreased conductivity and reduced capacity.

e Active mass (AM) degradation: The conductivity of active
mass (electrolyte) decreases over time and contributes
towards the capacity loss.

e Sulphation: The formation of sulphate acid crystals during
discharging contributes towards capacity loss.

e Active mass (AM) detachment: The active material may
also detach over time and cause capacity loss.

e Acid stratification: The higher concentration of acid in
specific areas of the electrolyte can also accelerate the
damage.

These factors cause internal damage and none of these can
be directly controlled. It is important to note that the capacity
loss of lead-acid batteries is largely irreversible but the rate of
degradation can be substantially reduced. Battery models are
developed in order to associate some or all of these aging factors
to externally controllable parameters, such as, terminal voltage
and state of charge (SoC). The most commonly used lead-
acid battery models are the Kinetic Battery model (KiBaM),
Trembley model, Ah-throughput model and Schiffer model
(weighted Ah-throughput model). A comparison of these models
based on their consideration of different aging factors is given
in the Table I [15], [16], [17], [18], [19], [20].

Table I shows that the most comprehensive but complicated
lead-acid battery model is the Schiffer model [21] which models
all the aging factors, except AM detachment. This model defines
the battery life by assuming the actual operating conditions that
are typically more severe than those used by manufacturers for
standard cycling and lifetime testing.

Table I: Comparison of different lead-acid battery models based
on their consideration of different aging factors

Factors Considered KiBaM  Trembley = Ah-throughput  Schiffer
Model Model Model Model
Voltage and SOC v v v v
© Corrosion X X X 4
® AM degradation X X v v
® Sulphation X X X v
® AM detachment X X X X
® Acid stratification | X X X v

B. Contributions

In this paper, we consider the Schiffer model that is the
most comprehensive but largely ignored (due to its complexity)
lead-acid battery model. Our first contribution lies in identifying
three important variables in the Schiffer model that have a huge
impact on battery aging process. These variables include, 1)
number of bad recharges, ii) time since last full recharge, and iii)
the lowest state of charge since last full recharge. Establishing
the dependence of these factors on SoC and ultimately the
externally controllable charge/discharge currents is our second
significant contribution. SoC of a battery can be estimated
from the battery terminal voltage [22]. The accuracy of SoC
estimation can be further improved by using sophisticated
techniques, e.g., coulomb counting and impedance spectroscopy
[23]. It is important to note that for lead-acid batteries terminal
voltage provides a simplified method to estimate SoC [22].
Our third contribution lies in the formulation of appropriate
optimization problems. The objective of these optimization
problems is the lifetime maximization of lead-acid battery based
on the identified variables. Simulation results demonstrate that

considering the load demand of small scale applications, the
proposed approach considerably improves the lifetime of lead-
acid batteries (up to 85%) in comparison to the simplified
models based traditional SoC control.

The rest of the paper is structured as follows: In Section II
we present the system setup and the Schiffer battery model. In
Section III, we model the dependence of the important factors
that affect battery lifetime and establish their dependence on
SoC. In Section 1V, we develop the constrained optimization
problems for the two scenarios discussed in this paper and
provide their solution. Simulation results and discussion is
presented in Section V, while the paper is concluded in
Section VI.

II. SYSTEM MODEL AND SCHIFFER BATTERY MODEL

In this section we describe our system model and discuss
the Schiffer battery model.

A. System Setup

Fig. 1 presents a system setup for small scale residential
system with battery storage. Primary source of energy is power
grid while solar PV panels are also installed. A charge controller
module is used to charge/discharge the lead-acid battery either
from the main grid or the solar panels and also ties excess power
to the grid. In the first scenario (scenario 1), we assume an
intermittent and unreliable power grid without the consideration
of solar PV panels in the system. In this case, inverter, charge
controller and a small capacity lead-acid battery constitute a
UPS system that provides power to few essential loads during
the power outages. In the second scenario (scenario 2), we
assume a reliable grid and solar PV panels. In this case, a
battery is used to store the excess power produced by the solar
panels and can be used for peak demand shaving or at times
when the tariff is relatively higher, a common research problem
in developed countries with stable grid.

Several other scenarios, e.g., intermittent grid with solar
panels and battery or the two way flow of power between
solar panels and grid, etc., are also possible but they are not
considered with in the current scope of this paper.
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Figure 1: System Setup
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B. Schiffer Battery Model

Schiffer model builds upon the basic Ah-throughput model.
This model multiples the nominal Ah-throughput of battery by
different factors in order to model the actual real life battery
operating conditions. The high level working of Schiffer model
is explained with the help of a flow diagram given in Fig.
2. Vg(t) is the terminal voltage and SOC(t) is the State of



charge of the battery at time ¢. In the model (shown in Fig.
2), Vp(t) is calculated by using a modified Shepherd equation,
while SOC(t) is determined by integrating the battery current
denoted by I(t), as given by Equation 1 & 7 in [21]. The
values of Vi (t) and SOC(t) are then used to compute the
capacity loss due to the active mass degradation and corrosion
to update the battery parameters. At any time ¢, the normalized
remaining battery capacity Cp..,(t) can be computed using the
following equation,

Crem(t) = Cd(O) - Ccorr(t) - Cdeg(t) (1)

where, C;(0) is the initial normalized battery capacity, Ceorr- (1)
is the capacity loss due to corrosion and Cl,(¢) is the capacity
loss due to degradation till time ¢ [21].

Current Temperature Battery
Parameters

Cell Voltage V, (t) and
State of Charge SOC(t)

Active Mass Corrosion of
Degradation Positive Grid

Capacity Loss

Figure 2: Flow Diagram of the Shiffer Battery Model

From Schiffer model, three significant factors that influence
the values of Ceopr(t) and Cyey(t) are identified. These are:

1) The number of bad recharges, denoted by n;(t).

2) Time since last full recharge, denoted by na(t).

3) The lowest state of charge since the last full recharge,
denoted by ns(t).

Active mass (electrolyte) degradation depends on the number of
bad recharges. Thus, minimizing the number of bad recharges
can significantly slow down the aging process. The size of
sulfate crystals increases if the time since last full battery
recharge increases. The bigger sized crystals increases the
mechanical stress on the active mass and accelerates the battery
aging process. As soon as battery is fully recharged the size
of sulfate crystals returns to normal. Therefore, regular full
battery recharges can increase the battery lifetime. Finally, if the
lowest state of charge of a battery since its last full recharge is
close to zero then the concentration of acid in specific areas of
electrolyte (acid stratification) increases, which accelerates the
electrolyte damage. Maintaining a high value of SoC can also
improve battery lifetime. By considering these three factors in
our algorithm design, we can significantly increase the lifetime
of lead-acid battery in small scale UPS and DRES. Thus, we
use the Schiffer model in reverse, i.e., from the capacity loss
equations, we determine significant factors that effect battery
lifetime. Using these factors, we determine appropriate SOC'(t)
values to calculate the battery charging/discharging currents.

It is important to note that based on our approach, it no
longer remains necessary to consider the complicated Schiffer
equations. Moreover, the consideration of new variables does
not significantly increase the complexity of the proposed

approach over traditional controllers (because we are still
controlling charging/discharging current)?.

III. MODELING THE FACTORS THAT AFFECT BATTERY
LIFETIME

In this section, we establish the dependence on SOC(t)
and derive a weighted sum of these three factors for battery
lifetime maximization.

A recharge becomes bad if at the end of the charging
interval the maximum value of SOC(t) attained, lies anywhere
between 0.9 and 1. After any recharge interval, ¢, the value of
n1(t) can vary between 0 < An < 1. The maximum value of
An =1 occurs, when the attained SOC(t) is 0.95 at the end
of the recharge interval. The variation of An with SOC(t),
attained at the end of the recharge interval is shown in Fig. 3
(it is defined by Equation 20 in [21].). Assuming, n(0) = 0,
we can model n,(¢) by the following equation,

¢ An; only at end of charging period
mi(t) = {0; otherwise

Thus avoiding bad recharges and minimizing the total number
of bad recharges can significantly boost battery lifetime. This
can be achieved either by fully recharging the battery whenever
possible or to avoid recharging or restrict recharging to certain
limits if there is a chance that at the end of charging interval
SOC(t) could end up between 0.9 and 1.
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Figure 3: Bad Recharge: The variation of An with SOC(t)
attained at the end of the recharge interval [21]

Let, t, > 0 denotes the last time when the lead-acid battery
was fully charged. The fully charged battery can either discharge
due to application demands or self-discharge. We can recharge
battery but unless it is fully recharged, the size of sulfate
crystals will not return to normal. Thus, at any time ¢ > t,, it
becomes important to minimize the time since last full recharge.

We model no(t) as,
t—1t, if:SOC(t)<1&t>1,
na(t) = " Cl&t—
0 if: SOC(t) =1&t=t,
It is also important to note that as soon as the value of SOC(t)
reaches 1, we reset the value of ¢, = t.

The third significant factor that affects lead-acid battery
lifetime is the minimum SoC value attained by the battery
since last full battery recharge, denoted by n3(t). Initializing,
ns(t,) = 1+ €, we model it as,

SOC(t) if: SOC(t) < SOC(t—1) &t > t,
n3(t) = ¢ SOC(t—1) if: SOC(t) > SOC(t—1) &t >t,
1+e if: SOC(t) =1&t=t,

2The additional complexity could be in the measurement of SoC values and
management of more variables.



The value of ns(t) is always equal to 14¢, where, ¢ = 0.001
represents a very small tolerance factor at times ¢ = t,, i.e.,
when the battery is fully charged. At other time slots, i.e.,
t > t,, we compare the current SOC|(t) value with the previous
SOC(t—1) value. In this time slot, the value of n3(t) is equal
to SOC(t) if SOC(t) < SOC(t—1), otherwise, ng(t) is equal
to SOC(t — 1). Maximizing the value of n3(t) is therefore,
important for battery lifetime maximization.

In order to simultaneously capture the impact of all the
significant factors that affect battery lifetime, we define a
weighted sum of nq(t), na(t) and n3(t). Again the Schiffer
model helps us derive the relative weights (derivation given in
Appendix A.).

§(t) = 7o) + In(n(t) +In([1 = ns(0)) )

In order to have more control in adjusting the relative impor-
tance of these factors, we also introduce additional arbitrary

constants a; > 0, as > 0 and a3z > 0 and redefine (2) as,

L(t) = o=m () +az ln(no(8)) + as In(|L = ns(8)]) 3)

The additional weights provide more flexibility as these can
be adjusted independent of the Schiffer model. Minimizing (3)
in every time slot will then maximize the battery lifetime.

In the next section, we discuss the load demand constraints
of the two scenarios for which we want to maximize the battery
lifetime and develop our optimization problems.

IV. OPTIMIZATION PROBLEM FORMULATION AND
SOLUTION

In this section, we develop optimization problems for
our applications with the objective of battery lifetime max-
imization and constraints of load current, battery SoC and
charging/discharging current. Let, Pp(¢) denotes the power
demand of a consumer (without battery) at time ¢. In the
charging mode, battery adds to overall load. Let, Py, (t) denote
the total power demand of a consumer including the battery
during the charging mode. This load demand can be fulfilled
by the combination of power drawn from the main grid, solar
PV panels and battery. Power balance equation is given as,

Peor(t) + Psp(t) + Ppr(t) > Pr(t) ;Vt “)
In this equation, Pgy(t) > 0, Psr(t) > 0, and Pgr(t) > 0
respectively denote the power drawn from the grid, solar PV
panels and battery at time ¢. The power, Pgr(t), drawn from
the grid can be used for two purposes, i.e., to meet a portion of
consumer demand Pgp(t) and to charge the battery, Pop(t).
Similarly, the power Pgy,(t) extracted from the solar panels can
also be used to meet a portion of consumer demand Psp(t),
and to charge the battery Psp(t). However, the power provided
by the battery can only be used to meet a portion of consumer
demand, denoted by Pgp(t). Mathematically,

Par(t) = Pep(t) + Pap(t) ;Vt &)

PSL(t):PSD(t)+PSB(t) ;Vt (6)
The constraint on fulfilling the consumer load demand from
available sources can now be expressed as,

Pep(t) + Psp(t) + Pep(t) > Pp(t) ;Vt (N
The usage of these equations for both the scenarios considered

in the paper is straightforward. For example, in scenario 1, there
are no solar PV panels, hence Psy (t) = 0 and Psp(t) = 0.

Let I(t) denote the total battery current at time ¢. Maximum
battery charging and discharging currents, denoted by ;"""
and I Zl 24" are always specified by the battery manufacturer,

which results in the following two constraints,
It) < T gjtnaz, ; Vt when battery is discharging (8)
I(t) < I;;7""", ;Vt when battery is charging )

The charge controllers available in the market employ
lower/upper voltage control limits in order protect battery. Since
our approach is based on SoC, we define lower/upper limits
on SoC i.e. SOCin timit > 0 and SOC a0 1imit = 1.

SOCmin timit < SOC(t) < 1, Vt (10)

The final constraint that we discuss here is a consequence of
limited battery capacity and (10). The battery capacity generally
used in specified systems during power outage hours is just
sufficient to provide power to few essential loads for limited
time duration. Therefore, the value of load demand, i.e., Pp(¢),
during the outage hours is always significantly less than the
consumer load demand in the non-outage hours. However, due
to intermittent nature of the grid, the energy stored in the battery
might not be sufficient to even provide the limited load demand.
To deal with such situations and to respect SOCiin 1imit, We
define,

) = (SO E0Cmmtinit ) 0o

where, Cy is the nominal battery capacity, Vg (¢) is the terminal
voltage at time ¢ and At is the outage duration. The load
demand is given by the following equation,

by _ [Polt) Po(t) < Paei(h

D(t) - Pavail Pr(t Pavail t
bat D( ) > bat ( )

Only when the load demand of the consumer during outage

hours is greater than the power that can be provided by the

battery we clip load demand to P25 (t). Please note that this
situation will never arise in scenario 2.

12)

Over the complete lifetime of the battery we have to draw
power from the main grid, solar PV panels and charge/discharge
battery in such a way that (3) is minimized. Thus we can define
the following objective function and the optimization problem,

i L(t 13
PGD(t)’PngH(It%PBD(t) Z ®) (1)

t

subject to constraints (4) - (10)

The optimization problems can be easily solved using
fmincon solver in Matlab (or some similar solver). Alternatively,
appropriate algorithms can also be developed that could be
implemented in practical battery charge controllers.

V. SIMULATION SETUP AND RESULTS

The lifetime of a lead-acid battery used in UPS system
and DRES is evaluated based on the developed optimization
problem. We will compare our approach with a simple voltage
based control that is widely used in practical systems. Battery
lifetime is defined as the total number of days after which the
remaining battery capacity reaches 80% of its nominal capacity
[13].



A. Simulation Setup

Scenario 1 considers a small scale UPS system without
solar PV panels with an intermittent power grid all year long.
The daily power outage pattern used in our simulations was
recorded by the authors in Lahore Pakistan and is shown in
Fig. 4. The power outage pattern has seasonal or sometimes
monthly variations but in our simulation setup we consider it
fixed.
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Figure 4: Power outage pattern

In scenario 1, we consider a middle income urban home
in India or Pakistan. The total power demand during the non-
outage hours (depending on the season) varies between 1-5KW.
It is a common practice in these countries to deploy a small scale
UPS system in homes to power up few essential appliances,
such as, lights, fans and mobile chargers. Thus, in our setup,
we assume an inverter with a power rating of 1000VA and a
12V lead-acid battery with 220Ah nominal capacity to meet
the critical load requirements during outage. Datasets of power
consumption values are not available,therefore, we model the
power demand during outage hours as a random value between
200-800W (using MATLAB random function). The maximum
charge current for the battery is assumed to be 22A, while
the maximum discharge current is limited to 66A. The value
of discharge current is sufficient to provide the maximum
load demand of 800W during the power outage hours without
causing damage to the battery. The parameters required for the
Schiffer model are based on the values presented in [13], [21].
The value of SOC,in 1imit i assumed to be 0.3. The values
of weights, i.e., a1, ae and ag are all set equal to 1.

Scenario 2 considers solar PV panels with battery and a
reliable power grid. Load demand is fulfilled by a combination
of power drawn from the grid, solar PV panels and battery. The
home power demand is modeled using the household power
consumption dataset provided by the UCI machine learning
repository [24]. The hourly solar power data was obtained form
PVWatt that is made available by National Renewable Energy
Laboratory (NREL) [25]. We used the dataset for a New-York
based solar PV system with 2KW rating. All other parameters
including battery specifications and Schiffer model parameters
are assumed to be the same as considered in scenario 1.

It is important to note that in scenario 2, for battery lifetime
improvement, some extra energy produced by the solar PV
panels would be discarded (e.g., to avoid bad recharges, etc.). In
the results and discussion section, we will compare the cost of
the wasted energy with the gains provided by the enhancements
in the battery lifetime. It is also important to note that in case
of two way power transactions between the power grid and
solar panel, the consumer can maximize his/her advantage by
selling the extra energy (that is not useful for battery lifetime
maximization and otherwise wasted) back to the grid. However,
this scenario is not considered in this paper.

B. Results and Discussion

For comparison, we consider as our base case, a simple
charge controller that works on terminal voltage control limits.

For the 12V lead-acid battery considered in our simulation setup,
the base case control algorithm sets an upper and lower voltage
thresholds respectively as 13.5V and 10.8V. This is a widely
used control algorithm in many practical charge controllers
[26].

Fig. 5 presents the lifetime of lead-acid battery achieved
by our approach and the base case for the two scenarios. The
lifetime is defined as the total number of days after which
the nominal battery capacity of 220Ah to reach 176Ah (i.e.,
80% of 220Ah). In scenario 1, we are considering a consistent
pattern of 7hour power outages per day, which is extremely
harsh. The base case is only able to provide a lifetime of 109
days. On the other hand, using our approach battery lifetime
can be extended up to 157 days. This indicates more than 44%
increase in battery lifetime?. Similarly, in scenario 2, which is
less harsh on battery than scenario 1, the base case provides a
battery lifetime of 243 days as compared to 454 days for our
approach (more than 85% improvement). These improvements
in the battery lifetime results from avoiding bad recharges,
minimizing the time between full recharges and maintaining a
high value of SoC between full recharges.
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Figure 5: Battery Lifetime Results

Lifeime (days)

(a) Scenario 1

In Table II, we present the total number of bad recharges for
both the scenarios. We can observe that in scenario 1 (the harsh
scenario), the number of bad recharges for the base case are
13.4, while for our approach there are only 1.2 bad recharges.
Similarly, for scenario 2, the total number of bad recharges
for the base case are 12.3, while there are 0 bad recharges
for our approach. It is interesting to note that our strategy can
completely avoid bad recharges in scenario 2 because we track
SoC and always discard excess energy produced by the solar
panels if there is a chance of SOC(t) ending up anywhere
between 0.9 < SOC(t) < 1. The other two factors, i.e., na(t)
and n3(t) also play a significant role in improving the lifetime
of lead-acid battery in both the scenarios.

Table II: Total number of bad recharges

Scenario 1 Scenario 2
Base Case | Our Approach | Base Case | Our Approach
Total # of bad recharges 134 | 1.2 2.3 | 0

Finally, we discuss and compare the cost of excess energy
produced by solar panels in scenario 2 that is discarded in our
strategy to avoid bad recharges. The total energy stored in the

31t is important to note that in developing countries with power outages, in
order to avoid replacements, a typical consumer keeps on using the battery
even after its capacity drops below 80% of the nominal capacity, albeit with
reduced performance.



battery by the base case charge controller is 15816KWh over its
lifetime of 243 days. On the other hand, the total energy stored
in the battery by proposed technique in same number of days

is 15230kWh. This energy is wasted to avoid bad recharges.

Assuming an average electricity price of $0.1215/KWh in USA
[27], the total cost of wasted energy is equal to (15816 —
15230) % 0.1215 = $71.2. The cost of 220Ah battery is $305
[28]. Our algorithm provides a lifetime improvement of 86.8%
over the base case that translates to 305 x .868 = $264.8 as
savings. The net benefit of our strategy is therefore, 264 —
71.2 = $192.8. Alternatively, to avoid energy wastage, elastic
home loads such as heaters/water pumps could be added.

VI. CONCLUSIONS

In this paper we maximize the lifetime of lead-acid batteries
commonly used in small scale UPS and distributed renewable
energy systems. We revisited the most comprehensive lead-acid
battery model (known as the Schiffer model) and identified
three important factors, i.e., the number of bad recharges, time
since last full recharge and the lowest state of charge since last
full recharge. These factors are entirely dependent on battery
SoC. We then developed a weighted sum of these factors as
our objective function and developed appropriate constrained
optimization problems for the two scenarios considered in this
work. These optimization problems can be readily solved to
obtain SoC-based charge/discharge algorithms. Results showed
a significant improvement in the lifetime of lead-acid battery
(more than 85% in some cases) as compared to the traditional
terminal voltage based charge control algorithms.

APPENDIX

We start with equation (15) in [21] and re-write it in terms
of the variables defined in our paper,

fsoc(t) = 1+(A+ B x (|1 = n3(t)])) x f1(I,n1(t)) xna(t)
(14)

where, A and B are constants and the value of A << B.

Dropping A, simplifies (14),
fsoc(t) = 1+ B x (|1 —=ns3(t)]) X fr(I,n1(t)) x na(t) (15)
Next we substitute the value of f7(I,n1(¢)) (equation (19) in
[21]) into (15) to obtain,
ng (t)

fsoc(t) =14+ B x (|1 —n3(t)]) x exp 108 xna(t) (16)
To obtain a weighted sum of the three factors n(t), na(t) and
nz(t) for use as an objective function for our optimization
problems, we drop the constant 1 and the scaling factor B
and then take the natural logarithm of the resulting expression,
which leads us to our desired equation (2).

REFERENCES

[1] B. Warshay, “Finding the perfect partner in the global grid storage
market,” Lux research, March 2013.

[2] S. Keshav and C. Rosenberg, “Direct adaptive control of electricity
demand,” tech. rep., CS-2010-17, University of Waterloo, 2010.

[3] S. H. Pandey, “Power supply position,” September 2015. [Online]

Available: https://data.gov.in/catalog/power-supply-position.

[4] Z. Sharani, K. Qayyum, N. Bashir, and A. Syed, “Softups: Eliminating
the need and cost of battery backups in the developing world,” in ACM
e-Energy, e-Energy ’14, pp. 207-208, 2014.

[5] M. Platzer, “U.s. solar photovoltaic manufacturing: Industry trends,

global competition, federal support,” June 2012. [Online] Available:
http://digital.library.unt.edu/ark:/67531/metadc93931/.

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

D. H. Doughty, P. C. Butler, A. A. Akhil, N. H. Clark, and J. D.
Boyes, “Batteries for large-scale stationary electrical energy storage,”
The Electrochemical Society Interface, vol. 19, no. 3, pp. 49-53, 2010.

P. Bulman, “Tesla’s powerwall battery production requires super-charged
supply chain,” Renewable Energy Focus, pp. 126 —127, 2015.

H. Ibrahim, A. Ilinca, and J. Perron, “Energy storage systems -
characteristics and comparisons,” Renewable and Sustainable Energy
Reviews, vol. 12, no. 5, pp. 1221 — 1250, 2008.

V. Boicea, “Energy storage technologies: The past and the present,”
Proceedings of the IEEE, vol. 102, pp. 1777-1794, Nov 2014.

B. B. McKeon, J.-i. Furukawa, and S. Fenstermacher, “Advanced lead-
acid batteries and the development of grid-scale energy storage systems,”
Proceedings of the IEEE, vol. 102, no. 6, pp. 951-963, 2014.

S. Matteson and E. Williams, “Residual learning rates in lead-acid
batteries: Effects on emerging technologies,” Energy Policy, vol. 85,
pp. 71-79, 2015.

M. Walid and A. Malek, “Charging algorithm for increasing lead-acid
battery cycle life in photovoltaic systems,” International Conference
on Renewable Energies and Nanotechnology impact on Medicine and
Ecology (ICERN), pp. 1-9, Feb 2013.

H. Bindner, T. Cronin, P. Lundsager, J. F. Manwell, U. Abdulwahid,
and I. Baring-Gould, Lifetime modelling of lead acid batteries. 2005.

D. H. N. Minh Y Nguyen and Y. T. Yoon, “A new battery energy
storage charging/discharging scheme for wind power producers in real-
time markets,” Energies, 2012.

H. Fakham, D. Lu, and B. Francois, “Power control design of a battery
charger in a hybrid active pv generator for load-following applications,”
IEEE Transactions on Industrial Electronics, pp. 85-94, Jan 2011.

Z. Qi, S. Wang, G. Liu, and G. Tian, “Integrated control of energy
management for stand-alone pv system,” in 2009 Asia-Pacific Power
and Energy Engineering Conference, pp. 1-4, March 2009.

B. Zhao, X. Zhang, J. Chen, C. Wang, and L. Guo, “Operation
optimization of standalone microgrids considering lifetime characteristics
of battery energy storage system,” IEEE Transactions on Sustainable
Energy, vol. 4, pp. 934-943, Oct 2013.

X. Li, C. Wang, J. Gong, and N. Hua, “Photovoltaic technology research
and prospects,” Energy, vol. 1, p. 2, 2010.

M. Glavin, P. K. Chan, S. Armstrong, and W. Hurley, “A stand-alone
photovoltaic supercapacitor battery hybrid energy storage system,” in
Power Electronics and Motion Control Conference, 2008. EPE-PEMC
2008. 13th, pp. 1688-1695, IEEE, 2008.

J. Dunlop and B. Farhi, “Recommendations for maximizing battery life
in photovoltaic systems: a review of lessons learned,” 2001.

J. Schiffer, D. U. Sauer, H. Bindner, T. Cronin, P. Lundsager, and
R. Kaiser, “Model prediction for ranking lead-acid batteries according to
expected lifetime in renewable energy systems and autonomous power-
supply systems,” Journal of Power Sources, pp. 66 — 78, 2007.

W.-Y. Chang, “The state of charge estimating methods for battery: a
review,” ISRN Applied Mathematics, vol. 2013, 2013.

M. Coleman, C. K. Lee, C. Zhu, and W. G. Hurley, “State-of-charge
determination from emf voltage estimation: Using impedance, terminal
voltage, and current for lead-acid and lithium-ion batteries,” IEEE
Transactions on Industrial Electronics, vol. 54, pp. 2550-2557, 2007.
M. Lichman, “UCI machine learning repository,” 2013. [Online]
Available: http://archive.ics.uci.edu/ml, Date Accessed [2016-05-04].
A. Dobos, “Pvwatts version 5 manual,” Tech. Rep. NREL/TP-6A20-
62641, National Renewable Energy Laboratory (NREL), January 2014.
Mighty Inverter 850VA/I.5KVA. [Online] Available: http:/www.
voltronicpower.com/, Date Accessed [2016-05-04].

Average Price of Electricity to Ultimate Customers by End-Use Sec-
tor. [Online] Available: https://www.eia.gov/electricity/monthly/, Date
Accessed [2016-05-04].

220AH 12V Flooded Deep Cycle Battery. [Online] Available: http:
/Iwww.aussiebatteries.com.au, Date Accessed [2016-05-04].



