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I am a computer systems researcher focused on improving the sustainability of computing . My work pushes the boundaries
of computer systems design and operation to address emerging challenges of rapidly rising computing demand, increasing
energy availability constraints, and unintended socio-environmental implications of computing. These are challenges our
current infrastructure cannot solve. I take the requisite multidisciplinary approach that integrates domain-specific knowledge
from energy systems and industrial ecology with advanced computer systems approaches to develop high-impact solutions at
all layers of computer system stacks and all steps in their lifecycles. In manifesting real-world impact, my work has enhanced
the resource efficiency of hyperscale datacenters [31] and powered community testbeds for carbon-efficient applications [47].
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Fig.1: An overview of my prior (❶ – ❹) and future work ( F1 – F4 ) across computer systems’ lifecycle stages.

Research Overview Over the past two decades, energy efficiency optimizations have increased computing’s economic pro-
ductivity but have not reduced its aggregate energy demand or environmental impact. Moreover, we are approaching several
physical limits of energy efficiency that have tempered growth in energy demand, with the end of Dennard Scaling and the
slowdown of Moore’s Law [48, 49]. Moving forward, mitigating computing’s lifecycle environmental impact will require priori-
tizing carbon efficiency – measured by the work done per unit of carbon (and other greenhouse gases) emitted. Computing’s
operational emissions (produced by energy use) can be reduced by doing more work when and where low-carbon energy is
available. Reducing embodied carbon emissions (from the production and disposal of computing hardware and infrastructure)
necessitates reevaluating hardware design, procurement, and capacity provisioning strategies. Ultimately, improving carbon
efficiency requires fundamentally new and disruptive research across the computer system’s software and hardware stack, in-
cluding modeling, design, manufacturing, operation, and graceful lifecycle extension of computing infrastructure. Figure 1
shows the contributions I have made towards solving these challenges. I briefly overview representative contributions below.
1 Systems Foundations. Computing applications lack visibility and control over their energy supply, preventing them from

adjusting power usage based on energy’s carbon intensity or renewable energy availability. To address this issue, I have done
foundational work on virtualizing datacenter energy systems and exposing software-defined control to applications [26].
Inspired by Exokernel, these abstractions enable applications to manage clean energy’s variability within their software stack
directly, aligning performance needs with sustainability goals by leveraging one or more dimensions of software flexibility
and fault tolerance. Ecovisor’s software ecosystem is open-source and deployed on a community testbed [27, 42, 45, 47].
I have also developed supporting tools to enable non-intrusive energy monitoring, thermal energy management, and a fair
distributed rate control for the Ecovisor ecosystem [18, 19, 39].

2 Carbon Efficiency Improvements at Short Timescales. At seconds to days timescales, improving carbon efficiency re-
quires continuously optimizing workload execution. My work highlighted that simultaneously optimizing for carbon, energy,
and performance is impossible. Using this insight, I have designed systems for various applications that strategically trade
energy or performance to achieve carbon-efficiency improvements. For instance, I developed CarbonScaler [20], a carbon-
aware autoscaler that scales up (energy inefficiently) during low-carbon periods (carbon efficient) without increasing job
completion time (maintaining performance). CarbonScaler and related artifacts are open-source [43, 45]. I demonstrated
that carbon footprint reduction opportunities are available for a broad set of workloads – such as data processing, scientific
computing, and AI training – and in various computing environments, such as public clouds, on-premise datacenters, edge
computing, and hybrid clouds [3, 6, 11, 20, 23, 24, 30, 34].

3 Decision-Making for Sustainable Development in Computing. Improving computing’s carbon efficiency through
sustainable choices across lifecycle stages – chip design, server procurement, and datacenter siting – often relies on data
with significant uncertainties. I have quantified uncertainty in carbon estimates, shown its impact on decision discernibility,
and developed strategies for decision-making under uncertainty. In doing so, I extended the Product Attributes and Impact
Algorithm (PAIA), a lifecycle analysis tool for ICT companies [44], to support uncertainty-driven quantitative assessments
of decisions [4]. Furthermore, the metrics quantifying computing’s carbon footprint and making decisions are still evolving.
I have also rigorously evaluated carbon-based metrics and their incentives for holistic carbon reduction [1, 2, 5, 10, 16, 28].
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4 Computing for Sustainability. The net sustainability implications of computing and AI tools can be improved by using
them to quantify and reduce emissions in other societal sectors. I have done extensive work on using computational
methods to accelerate the decarbonization of the electric grid, buildings, and transportation sectors. First, I have designed
spatiotemporal scheduling algorithms for learning-augmented online optimization that use AI predictions to achieve better
average-case performance without sacrificing worst-case competitive guarantees [7–9, 22]. These algorithms apply to a
broad set of sustainability problems, such as carbon-aware electric vehicle charging and computing workload execution.
Second, I used physical models and data-driven ML methods for solar PV performance modeling and forecasting [32,
35, 37], Bayesian methods for anomaly detection in solar panels [33, 36], and distributed rate control approaches from
computer networks for controlling distributed solar capacity [38, 39]. Third, to support energy transition in the buildings
sector, I have developed tools for tactical energy transition from gas-based heating to electric heat pumps [21, 29], incentive
design for solar energy adoption [14, 15, 25], and devising smart load-shedding solutions [40, 41]. Finally, I have devised
carbon- and equity-aware ride assignment policies for ridesharing platforms [12, 13, 17].

Across these threads, I have enabled computing stakeholders to reliably quantify and significantly reduce the lifecycle
environmental impact of AI demand while demonstrating how AI can accelerate societal decarbonization. In doing so, I utilized
the system stack of software-defined infrastructure, distributed systems, resource management, and performance evaluation.

Future Research Directions My work on building systems, carbon-efficient applications, and frameworks for sustainable AI
is evergreen. However, its capabilities must expand, and its application to improving computing’s carbon efficiency will need
to evolve, presenting a rich set of challenges as the insatiable demand for AI workloads grows, new application frameworks
emerge, tangible incentives to reduce carbon footprints are introduced, or planetary limits on materials and emissions are
reached. Below, I envision my research addressing existing and future challenges in enabling sustainable AI, shown in Figure 1.
F1 – Designing and Operating Sustainable Datacenters. Meeting the growing demand for AI workloads responsibly re-

quires a sustainability-aware, multidisciplinary approach that both looks inward to address user, application, and infrastructure
challenges in datacenters and outward to understand electric grid constraints and the challenges it faces for a reliable operation.

My work will lay the groundwork for sustainable datacenters by benchmarking their architecture, hardware, and workloads
to assess tradeoffs between performance, energy, and sustainability metrics, such as carbon and water footprint. In this effort, I
will develop system support that enables datacenters to automatically adjust their operations at minimum performance impact
based on grid conditions at short time scales while optimizing design for mutually beneficial coordination with the electric
grid over the long term. I will develop higher-level frameworks for the sustainable operation of datacenters, respecting the
constraints and objectives of users, datacenter operators, and grid utilities. This will involve creating carbon-centered service
level agreements (cSLAs) that allow cloud platforms to offer sustainable solutions while enabling users to optimize sustainability
and financial goals. Finally, I will develop frameworks for datacenter–grid coordination, leveraging game-theoretic approaches
to design datacenter demand response solutions that offer meaningful incentives for participation.
F2 – Co-Adapting Emerging Applications and Heterogeneous Hardware. Modern cloud-native and AI inference-driven

applications are being deployed on heterogeneous (specialized and aging) hardware and are driving much of the increase in
computing demand. Prior work does not tackle optimizing the carbon efficiency of this evolving software-hardware ecosystem.

Interestingly, the defining aspects of emerging applications – scalability, resiliency, and redundancy – are also desired
characteristics for using power from highly variable and unreliable renewable energy sources. I will develop new abstractions for
developers and cloud operators to deploy modern applications on specialized (for performance) and aging (to reduce embodied
carbon) hardware run on intermittent renewable power (to reduce operational carbon) while balancing ease of use against deep
optimizations. However, these applications’ sheer scale and distributed nature make deploying any optimizations challenging,
and simple heuristics do not work well. While modern black-box ML/AI tools for systems are being used, they are generally
reserved for non-critical and particular use cases due to their poor generalization and lack of worst-case guarantees. I will
continue my work on combining AI advice with robust algorithms to provide good average-case performance and worst-case
guarantees when using AI tools for systems, ensuring they remain adaptive and robust in dynamic and uncertain environments.
F3 – Digital Twins-in-the-Loop (DTIL) Datacenters. There is no production-scale deployment of sustainable computing

solutions, such as spatiotemporal workload migrations and datacenter demand response. Beyond the lack of incentives, the
key obstacle is an obscured view of sustainability-driven optimizations’ financial, technical, and infrastructure implications.

My research will lead an effort to build holistic end-to-end models for distributed datacenter infrastructure that accounts for
cost, energy, carbon, and performance impacts of carbon-aware optimizations. For instance, I will develop realistic models for
workload migrations’ cost and carbon impacts in the network. Similarly, I will also focus on the challenging and pressing issue
of modeling the tradeoffs between redundancy, availability, and embodied carbon. The modeling effort will drive a reassessment
of the relentless pursuit of marginal gains in performance – without demonstrated system-scale benefits – and identify the
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realistic carbon-aware optimizations at scale. In the long run, guided by the modeling efforts, I aim to leverage AI tools to
design digital twin-in-the-loop (DTiL) datacenters that have a symbiotic relationship with the physical infrastructure. The
DTiL datacenters will use digital twins to optimize operations at short timescales and inform design at long timescales.
F4 – Computing-Energy-Society Nexus. A push towards electrification and embedded intelligence across various societal

sectors creates interdependencies that did not exist before. For instance, smart electric cars are changing the landscape
of personal transportation: they require computing resources across the stack (device, edge, cloud) and create electricity
couplings between residential and commercial buildings. Ultimately, datacenters, the electric grid, and other societal sectors
are increasingly coupled due to reliance on computing and electric grids. This means that a siloed focus on improving resource
efficiency in each sector is unlikely to yield practical solutions that lead to societal-scale decarbonization [46]. My research
will design computing solutions (infrastructure and software) that power computational approaches to holistic cross-domain
decarbonization. The geographical distribution of demand (e.g., roadside, buildings, cloud-based) and its varying temporal
characteristics (e.g., ephemeral on the roadside, periodic in buildings, continuous analytics in the cloud) will require hardware-
software solutions that sustainably serve cross-sectoral approaches instead of domain-specific over-provisioned solutions.
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