EcoLearn: Optimizing the Carbon Footprint
of Federated Learning

Talha Mehboob

University of Massachusetts
Ambherst, USA

Michael Zink

University of Massachusetts
Ambherst, USA

Abstract

Federated Learning (FL) distributes machine learning (ML)
training across edge devices to reduce data transfer over-
head and protect data privacy. Since FL model training may
span hundreds of devices and is thus resource- and energy-
intensive, it has a significant carbon footprint. Importantly,
since energy’s carbon-intensity differs substantially (by up to
60x) across locations, training on the same device using the
same amount of energy, but at different locations, can incur
widely different carbon emissions. While prior work has fo-
cused on improving FL’s resource- and energy-efficiency by
optimizing time-to-accuracy, it implicitly assumes all energy
has the same carbon intensity and thus does not optimize
carbon efficiency, i.e., work done per unit of carbon emitted.

To address the problem, we design EcoLearn, which min-
imizes FL’s carbon footprint without significantly affecting
model accuracy or training time. EcolLearn achieves a favor-
able tradeoff by integrating carbon awareness into multiple
aspects of FL training, including i) selecting clients with high
data utility and low carbon, ii) provisioning more clients dur-
ing the initial training rounds, and iii) mitigating stragglers
by dynamically adjusting client over-provisioning based on
carbon. We implement EcolLearn and its carbon-aware FL
training policies in the Flower framework and show that
it reduces the carbon footprint of training (by up to 10.8X)
while maintaining model accuracy and training time (within
~1%) compared to state-of-the-art approaches.
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1 Introduction

Federated Learning (FL) is an increasingly popular machine
learning (ML) approach that trains models on data distributed
across numerous edge devices [1, 2], potentially spread over
large geographic areas. FL enhances data privacy and secu-
rity compared to centralized ML by processing data locally
and only sending updated model parameters to a central
server. This reduces data transfer overhead and keeps raw
data on the device, safeguarding user privacy. In many appli-
cation scenarios, FL is an important tool for complying with
data protection laws, such as GDPR [3].

Unlike centralized learning, FL operates on distributed
data across many clients. In each training round, only a
subset of clients is selected, often randomly. These clients
perform multiple training iterations, e.g., using stochastic
gradient descent on their local data, before sending model
updates to a central server for aggregation into the global
model. FL models are typically trained on privacy-sensitive,
heterogeneous data from diverse environments. For example,
images from different CCTV cameras in a hospital parking
lot on opposite coasts in the United States during winter may
vary significantly, meaning data across clients may not be
independent and identically distributed (i.i.d.). Importantly,
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Figure 1: Client’s statistical utility de- Figure 2: The utility-aware baseline Figure 3: EcoLearn selects high-
creases as the client participates in train- greedily selects clients with the highest utility, low-carbon clients early
ing (shown in left), whereas the carbon utility resulting in carbon cost of 460 to exploit the critical learning
intensity for each client varies over time (left). The utility- and carbon-aware pol- period and does carbon-aware
(shown in right). One unit of time is one icy selects using carbon-normalized util- straggler mitigation, yielding

training round.

the clients selected in each round can impact i) the time re-
quired to reach a target accuracy or ii) the accuracy achieved
within a fixed training time. For example, repeatedly select-
ing clients missing certain data classes may prolong training,
requiring additional rounds to cover those classes.

FL often selects random subsets of clients each round.
However, this approach can increase training time by requir-
ing many rounds to ensure sufficient data coverage. Random
selection may also waste resources by continually training on
data that contributes little to model accuracy. Recent research
focuses on intelligent participant selection, which chooses
clients based on their data’s statistical “utility” — how much
data improves the global model’s accuracy [4, 5]. Such intelli-
gent client selection significantly reduces resource waste and
shortens training time. Unfortunately, while reducing the
training time necessary to achieve a target accuracy is impor-
tant, prior work generally does not consider that clients may
incur widely different “costs” for local training. In particular,
an increasingly important cost is energy’s carbon intensity,
which may differ widely across geographically distributed
clients due to varying sources of electric energy (e.g., fossil
fuels, renewables, nuclear, etc.) in different locations. Thus,
optimizing a model’s carbon footprint is becoming just as
important as optimizing its accuracy and training time.

Recent work [6] suggests that by 2026 [7], advancements
in foundational models will increasingly rely on FL, as orga-
nizations with computational resources but restrictive data
policies opt for collaborative training [8—10]. This shift has
significant sustainability implications, as training a small
ML task using FL can generate higher carbon emissions
than training large transformer models in a centralized set-
ting [11]. These challenges emphasize the need for research
to enhance efficiency and sustainability in FL.

To address the problem, we present EcolLearn, which con-
currently optimizes FL’s carbon footprint, accuracy, and

ity and has a carbon cost of 330 (right). carbon cost of 290.

training time. As we discuss, gracefully navigating this three-
way tradeoff requires integrating carbon awareness into mul-
tiple aspects of FL training, such as deciding which clients to
select, how many to select, and when. As shown in Figure 1
and Figure 2, existing utility-based (and carbon-agnostic)
client selection achieves a high model accuracy and low train-
ing time but incurs a high carbon cost [4, 5]. Alternatively,
a simple carbon-only policy that selects only low-carbon
clients significantly increases training time and decreases
accuracy due to low data coverage (not shown in this figure).

EcoLearn optimizes its carbon footprint while main-
taining training time and accuracy by integrating carbon-
awareness into when, how many, and which clients to se-
lect. EcoLearn exploits the “neuroplasticity” of a model in
early rounds, i.e., its critical learning period [12, 13], to boot-
strap model weights using a large number of high- clients.
EcoLearn improves accuracy beyond a simple utility-based
approach by selecting only high-utility clients during this
early-round scale-up. However, it selects clients with high
normalized utility per unit carbon, sacrificing the potential
increase in accuracy beyond the utility-based approach to
lower its carbon footprint, as shown in Figure 3. The final in-
gredient is dynamic over-provisioning of clients for straggler
mitigation, selecting more “extra” clients during low carbon
periods to reduce training time, instead of a fixed ratio used
by prior work [4]. Notably, making existing carbon-agnostic
utility-based techniques carbon-aware is insufficient, as it
reduces the accuracy to reduce the carbon footprint (shown
in Section 4.2). This motivates EcoLearn’s additional op-
timizations including time-varying scaling within critical
learning period and incorporating carbon-awareness into
straggler provisioning. EcoLearn’s techniques can general-
ize to “cost” metrics other than carbon.

Our hypothesis is that EcoLearn’s adaptive carbon-aware
policies for which, when, and how many clients to select
can substantially lower FL’s carbon footprint (by an order of
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magnitude) while maintaining model accuracy and training
time, even for highly non-i.i.d. data, compared to state-of-
the-art carbon-agnostic approaches.

In evaluating our hypothesis, we make the following con-
tributions.
1 - Carbon Awareness in FL. Optimizing FL’s carbon foot-
print by leveraging spatiotemporal variations in the grid’s
carbon intensity presents a fundamental tradeoff between
carbon, model accuracy, and training time. A singular focus
on selecting which clients for training cannot gracefully nav-
igate this tradeoff. To do so, we integrate carbon awareness
into multiple aspects of client selection (see Section 2).
2 — Practical Adaptive Carbon-Aware Policies. We de-
sign adaptive carbon-aware policies for EcoLearn that solve
the challenges of precisely determining which, how many,
and when to select clients when training an FL. model in prac-
tice. EcoLearn’s policies lie at the Pareto-frontier of model
accuracy and carbon cost to train the model (Section 3).
3 - Implementation and Evaluation. We implement
EcoLearn using the Flower framework [14], and evaluate
it across multiple synthetic and real datasets with differ-
ent data distributions across clients. Our results show that
EcolLearn reduces the carbon footprint of FL training (by up
to 10.8%X) while maintaining model accuracy and training
time of state-of-the-art approaches (details in Section 4).

2 Background and Motivation

Below, we provide an overview of FL (Section 2.1), resource-
and carbon-efficient FL (Section 2.2) and EcolLearn’s ap-
proach to carbon-efficient FL (Section 2.3).

2.1 Federated Learning Overview

Federated Learning (FL) is a machine learning (ML) approach
for iteratively training a model where the training data is
distributed across many client devices [2]. An FL framework
comprises two main components: a centralized server or
aggregator and distributed devices or clients. The training
process occurs over multiple rounds to improve model accu-
racy by leveraging numerous clients [15].

In each round ¢, the aggregator determines which and how
many clients will participate. Let K be set of clients in round
t, and N be the total number of clients. Typically, |%;| < N
since only a small fraction of clients participate in each round
due to communication bottlenecks. Each participating client
k € K; receives the global model parameters w; and trains
on its local dataset Dy. The objective at each client is to
minimize the local loss function £ (w) on the local data Dy:

1
Li(w) = Del i;kf(w;xi, yi)
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Table 1: List of variables and their descriptions.

Variable | Description
K Set of clients selected to participate in round ¢.
N Total number of clients in the FL system.
Wy Global model parameters at round ¢.
Dy Local dataset of client k.
Li(w) Local loss function for client k, based on dataset Dy.
¢(w;x;j, y;) | Loss function for a single data point (x;, y;).
Awp Model update (gradient) from client k.
n Learning rate for gradient descent.
| Dtotal | Total data points across all participating clients in a round.

where ¢(w; x;, y;) represents the loss for a single data point
(xi,y;), and w denotes the model parameters.

The clients then compute the gradient update Awy, =
w; — nV.Ly(w;) using their local data. After local training,
each client sends the model update back to the server, which
aggregates these updates. A common aggregation strategy is
Federated Averaging (FedAvg) [2], which updates the global
model as a weighted average of the clients’ updates:

Woar = 1 | Dy Wi
t+1 — T4,
|7(t| Kek, IDtotall

where |Diotq| is the total number of data points for all
participating clients in that round.

However, some client updates may not arrive due to net-
work issues, computational resource availability, or energy
constraints. Clients that do not respond or take too long
are called stragglers, and can significantly delay training. To
mitigate these stragglers, the aggregator may use techniques
such as discarding updates from late-arriving clients.

FL typically includes criteria that determine when to stop
training [2, 16]. We focus on two widely-used criteria: model
convergence, where training stops when gains in model per-
formance become small, i.e., ||[wW; 1 —W;||2 < 7, where 7 is the
threshold, and performance threshold, where training halts
when the model’s accuracy on a validation dataset reaches a
predefined threshold Tpes.

2.2 Carbon-Aware and Resource-Efficient
Federated Learning

In this section, we review recent work on improving FL’s
resource efficiency. We then present an analysis of spatiotem-
poral variations in energy’s carbon intensity across clients.
We finally discuss how prior work on resource-efficient FL
does not directly apply to optimizing carbon.

1 - Resource efficiency in FL. FL’s resource efficiency
is dictated by the operation of its aggregator and clients.
Prior work has explored optimizing resource requirements
for aggregators, e.g., [17]. However, clients incur most of the
computational load in FL using their computational and com-
munication resources. Prior work has advanced optimizing
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Figure 4: Average carbon intensity variations in differ-
ent geographical regions expressed as the coefficient of
variation (CV) of each region’s carbon intensity. The
dotted lines in the figure represent the average carbon
intensity and the average CV across all regions.

model performance [18] and system efficiency [2] to tackle
the challenges posed by clients’ data and system heterogene-
ity. However, further optimizations, such as intelligent client
selection instead of the traditional random selection [15, 19],
have only recently received attention.

Recent work has improved on random selection. For in-
stance, Oort [4] employs a guided client selection approach
to prioritize clients with higher statistical utility to maximize
system efficiency. Statistical utility is measured using train-
ing loss as a proxy, while system efficiency is determined by
completion time. Oort prioritizes faster clients to reduce the
round training time. It uses a pacer algorithm, that allows
for longer round durations to include slower or unexplored
clients, thereby improving the model’s overall statistical effi-
ciency. REFL [5] extends Oort to minimize resource waste by
incorporating model updates from straggler clients as they
arrive after each round ends. Other approaches, such as Pyra-
midFL [20], fine-tune client selection by considering data
heterogeneity within selected clients and data plus system
heterogeneity between selected and non-selected clients.

2 — Spatiotemporal variations in carbon intensity. FL’s
carbon footprint depends on energy’s carbon intensity,
measured in grams of CO, equivalent per kilowatt-hour
(9-COzeq/kWh), across geographically uniformly distributed
clients. Due to differences in energy sources—ranging from
fossil fuels like coal and gas to renewables like hydro and
wind—energy’s carbon intensity can vary significantly be-
tween client locations. Figure 4 shows a scatterplot of the
average carbon intensity against its daily coefficient of vari-
ation, computed as the standard deviation over the mean.
Each circle represents one of the 100 locations worldwide.
As shown, there is a significant difference in carbon intensity
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across locations (along the y-axis) and high variations over a
single day (along the x-axis) in a given location. These real-
world spatiotemporal variations in carbon intensity
demonstrate a significant potential for carbon-aware
federated learning.

We use real carbon-intensity data from Electrici-
tyMap [21], a third-party service that provides aggregated
real-time data on grid electricity carbon intensity, to model
and derive client carbon costs in our experiments. Another
widely used service is WattTime [22], which also offers real-
time carbon intensity data. These sources provide the car-
bon intensity data for up to 99% of geographical locations
globally, with only a few exceptions (e.g., parts of far-eastern
Russia, Svalbard, and Jan Mayen). Companies such as Google
already rely on these services to inform users of carbon inten-
sity estimates for their cloud regions [23]. Thus, intelligent
carbon-aware client selection selects clients only if their car-
bon intensity is low, reducing the carbon cost incurred by
each client and, ultimately, FL’s global carbon footprint.

3 - Resource-efficient FL for carbon optimizations. Prior
work defines resource efficiency in terms of the time to reach
a target model accuracy. This may not always translate to
reducing carbon footprint, as participating clients may have
high carbon during that time. Also, the work on reducing
wasted computations at stragglers, at best, reduces system-
level carbon waste but does not impact the carbon emitted
by each client. Prior work such as Oort can be extended to
reduce carbon by treating carbon as a resource or a cost
and maximizing 1/carbon instead of utility. However, in Sec-
tion 4, we show that extending existing resource-efficient FL
approaches for carbon awareness by simply changing their
objective to carbon does not result in a desirable tradeoff
between carbon, training time, and model accuracy.

Optimizing FL’s carbon footprint instead requires inte-
grating carbon awareness not only in the decision of which
clients to select but also how many to select and when. We
now present the FL model training insights that EcoLearn
leverages to inform its decisions.

2.3 Key Ingredients of EcoLearn

EcoLearn decomposes the problem of carbon-efficient client
selection into three key steps: first, determining when and
how many clients to select during the training duration;
second, deciding which clients to select in each round of
training; and third, how many replica tasks to prevision in
order to mitigate straggler-induced delays.

In making these decisions carbon-aware, EcoLearn ex-
ploits fundamental insights from prior work on how the
utility of clients in improving global model accuracy can
change based on data heterogeneity, the number of rounds
progressed, and the number of clients selected in each round.



EcolLearn

150

-
n
o

[{}

o
n
o

Client Utility
S 8

Client Utility
3

w

o
(]
o

o
o

3 04 05 06 0.7 0.8 09

"Level of Non-iid

Round (#)

SEC 25, December 3-6, 2025, Arlington, VA, USA

100
;\? 80 v
S0 | L g
© Partial Clients in All Rounds -~
5 40
8 All Clients in All Rounds ——-—
< 20
More Clients in Early Rounds —
. 0+ T T T T T T
10 0 10 20 30 40 50 60 70

Round (#)

Figure 5: Impact of data heterogene- Figure 6: Impact of the number of Figure 7: Impact of how many clients
ity across clients on the statistical training rounds a client participates are selected across rounds on the ac-
utility of a given client toward the in on the statistical utility of a client curacy of the globally trained feder-

global federated learning model.

Table 2: Summary of related FL frameworks and their
key attributes compared to EcoLearn.

FL Client Straggler | Client Carbon

Framework | Selection | Mitigation | Scaling | Awareness
Oort v v X X
REFL v v X X
CriticalFL X X v X
FedZero v v X v
PyramidFL v v X X

[ EcolLearn [ v [ v [ v [ 4 ]

1 - Variations in utility across clients. A client’s statis-
tical utility quantifies its importance in improving model
accuracy [4]. Figure 5 shows a client’s statistical utility as
a function of data heterogeneity across clients (quantified
using the level of non-iid). In general, if all clients have
the same distribution of classes, the data is independent and
identically distributed (iid). If clients have different distribu-
tions of classes, it is considered non-iid. Section 4 describes
how we compute the level of non-iid for a given dataset.

As shown in Figure 5, the average utility of participating
clients decreases as the level of non-iid increases; model
updates from clients with highly specific data are less use-
ful. Instead of blindly minimizing carbon cost, EcoLearn
opportunistically trades carbon footprint for gain in model
accuracy, i.e., it accepts a high carbon cost for a client with
high utility. More formally, it selects clients based on their
normalized utility per unit of carbon.

2 - Change in utility over rounds. If a model has learned
from a given dataset, even partially, the value of learning on
that data reduces. Figure 6 shows that as clients participate
in training rounds, the global model learns from their data,
and their statistical utility decreases. This is a useful property
as it changes the order of clients; recently selected clients
go down, and new clients with slightly smaller utility per
unit of carbon have a higher ranking. This intrinsic shuffling
of clients exposes EcoLearn to a broader range of clients,
allowing it to select clients with lower carbon.

3 - Impact of time-varying number of clients. FL client
selection approaches such as Oort and REFL select the same

at a fixed level of non-iidness.

ated learning model.

number of clients across all rounds. However, prior work
on ML training in centralized and federated settings has
highlighted the presence of an initial period in training when
the model learns faster. During this period, an exposure to a
large number of high-quality clients can enable it to reach
model accuracies that are not possible otherwise [12, 13].
This period is akin to, and gets its name from, the critical
learning period-(CLP) in humans, where children learn very
fast. Figure 7 shows that selecting more clients in the early
rounds to exploit the CLP can result in the same accuracy
as selecting all clients at all times with astronomical carbon
costs. EcoLearn amplifies this effect by selecting high-utility
clients during the initial rounds, offsetting the suboptimality
of later selection based on utility per unit of carbon.
EcoLearn exploits low carbon periods to over-provision
the number of clients in each training round, accommodates
stragglers to reduce the training time, while ensuring the
carbon cost of resulting wasted computation remains low.

Comparison with related FL frameworks. Table 2 shows
that EcolLearn distinguishes itself from other resource-
efficient approaches in FL by integrating carbon aware-
ness into multiple aspects of client selection—an aspect
not addressed by prior work. The only existing approach
that incorporates carbon awareness into client selection is
FedZero [24], as it focuses solely on utilizing renewable and
spare energy to reduce carbon costs. This work is orthog-
onal to EcolLearn, as it selects only those clients powered
by zero-carbon energy sources (such as excess renewable
energy or spare computing capacity). This strategy may re-
sult in certain clients being unavailable for extended periods
or, alternatively, relying on carbon-intensive grid energy
when zero-carbon sources are not accessible—thereby in-
creasing training time and/or the overall carbon footprint. In
summary, EcoLearn selects high-utility but low-carbon clients
during the early rounds and opportunistically launches replicas
during low-carbon periods to mitigate stragglers. As shown
in Section 4, EcoLearn significantly reduces the carbon foot-
print while maintaining the accuracy and training time of
the carbon-agnostic policies.



SEC 25, December 3-6, 2025, Arlington, VA, USA

=

CScale Distributed
Clients

7 CProv
& ® [T
rounds

# clients
#clients

rounds @
Ecolearn I 1
Configs
£ Y [CSelect| [ Workstations
B Client @ g
i) § Ooooo .. Selector § 5
5 ooogE \___ Selected Clients oo _|°
I B DDDD = rounds Datacenters
Carbon API 20000 Periodic updates Model
> [ UPDRTE of ranking and Accuracy
[="0] List of Clients = | explored status. Curve BT
== I T o)
—1 Utili y /. Global Model
Cient Uttty ] Ut . — () T Urdate Flaarer
Database Estimator " P Mobile Devices

Figure 8: EcoLearn design and its components.

3 EcoLearn Design

Figure 8 provides an overview of EcolLearn’s general design,
which includes carbon-aware policies as a per-round client
selection mechanism. Our client selection mechanism can
easily be extended to different federated learning (FL) frame-
works. A design choice enabling integration with higher-
level APIs that provide FL-based inference services.

EcoLearn integrates with and extends existing FL frame-
works that already provide basic functions of communication,
client configurations, and model updates at the aggregator.
However, FL frameworks do not provide native support for
monitoring carbon footprint, or any other cost, of the clients.
We had to implement the auxiliary modules needed for car-
bon awareness, such as the time- and location-specific carbon
information services. As discussed in Section 4.1, we chose
the Flower Framework [14] in our implementation, which is
one of the most widely used FL frameworks for FL research
and practical deployments. However, our design also applies
to similar frameworks that enabling configuring the list of
clients that are selected in each round of training.

We next detail the EcoLearn modules and describe how
they enable EcoLearn to make three decisions:

©® How many clients should it select in each round to exploit
the learning benefit of early rounds? (Section 3.1)

@ Given the desired number of clients for a round, how
many extra clients should it provision to ensure that the
desired number of clients respond in time? (Section 3.2)

® In selecting a specific number of clients, which specific
clients should it select? (Section 3.3)

In detailing these modules, we highlight our design de-
cisions to make these modules carbon-aware and the chal-
lenges we faced in practically implementing our solutions.

3.1 CScale: Time-varying Client Scaling

FL typically uses the same number of clients for all training
rounds. However, prior work on analyzing learning patterns
in ML and FL suggests that selecting more clients in the
earlier training rounds is critical for creating strong con-
nections that better understand the distribution of client
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data [12, 13, 25]. As we discussed in Section 2.3, and shown
in Figure 7, the learning boost from a higher number of
clients in earlier rounds enables the model to increase the
accuracy achieved at the end of training [12, 13]. EcoLearn
exploits this phenomenon to reduce the number of rounds
and carbon emissions needed to reach a target accuracy.

In practice, scaling the clients across rounds to exploit the
critical learning period is non-trivial, as when it starts, how
long it lasts, and how many clients are enough during this
period is not known a priori. In addition, the answers to
these questions change based on model- and data-specific
factors. Therefore, the critical learning period must be iden-
tified online in a way that adapts to different FL settings and
environments. To solve this problem, EcoLearn develops a
mechanism to detect the start and end of the critical learning
period and a set of policies that scale the number of clients.

Detecting critical learning period. Prior work analyzes
the weighted aggregate of loss gradients across all the clients
during their local training to identify when the learning
slows down [12, 13]. However, this approach is intrusive
and incurs the overhead of collecting gradients. To tackle
this challenge, as stated in Algorithm 1, CScale uses the
accuracy curve of the global model to mark the start and
end of CLP (line 1). Figure 9 shows the curves for both the
accuracy (left y-axis) and the magnitude of its derivative
(right y-axis). Typically, accuracy increases sharply during
the initial learning phase, resulting in a high, rapidly increas-
ing derivative, indicating the CLP. Gradually, the slope of
the accuracy curve decreases, and its derivative starts ap-
proaching 0. As the magnitude of the derivative falls below a
predefined threshold (z4eriv) set by EcoLearn, the detection
algorithm marks that point as the conclusion of the CLP.

Scaling the number of clients. Once the CLP starts, the
ClientScaler scales the number of clients until the mag-
nitude of the derivative falls below the specified threshold;
at which point it starts decreasing the number of clients as
mentioned at line 4. CScale enables three scaling policies
with different scaling up and down factors. Adjusting these
factors affects the training performance and carbon cost.
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Algorithm 1: ClientScaler
Input :Scaling policy (), CLP detection threshold
(Tderiv)» minimum no. of clients (Nyin)
Output:Ncrp
1 A « AccuracyCurve() A’(r) < ”oll—‘;‘;
2 pe= AN
3 fr < %er:rfzﬁl A" (D)
4 Ncrp < IncreaseClients(P) if pr <
Tderiv €lse max(DecreaseClients(%P), Nyin)
5 return Ncrp

Algorithm 2: StragglerProvisioning

Input :Ncrp, carbon weight (wcarbon), training time
weight (Wtime)
Output: CLP and staggler-aware (SA) number of clients
Ncrp-sa
1 over_prov_factor « CarbonTrainTimeTradeoff(wearbon,
@time)
2 Ncrp-sa < Ncrp X (1 + over_prov_factor)
3 return Ncpp-sa

(1) SteadyStep — Clients are added steadily during CLP
and dropped steeply after CLP. Each round adds a; X N
clients (; is a small value). Post CLP, f; X N clients are
dropped (f; is relatively larger).

(2) RapidTaper - Clients are added rapidly during CLP and
dropped steadily after CLP. The values of a; and f, are
reversed, with a, being large and f3; being small.

(3) ModestShift — Clients are added and dropped at a mod-
erate rate, with a3 and ff5 being similar values.

Here, a; > a3 > ay, conversely, f; > f3 > f, and N is
the total number of clients. Figure 10 illustrates how the
number of clients is scaled up and down based on these
strategies. Note that SteadyStep minimizes the time during
training when a higher number of clients are selected and
thus reduces the carbon cost the most while maintaining the
accuracy compared to the baseline policies. We show the
effect of scaling factors on performance in Section 4.4.

3.2 CProv: Straggler-Aware Client
Provisioning

The client scaling component discussed in the previous sec-
tion aims to reduce the average number of clients per round,
lowering carbon costs. However, selecting a smaller number
of clients may lead to an unexpected drop in accuracy and
an increase in training time if some of the selected clients
are stragglers. Recall from Section 2.3 that stragglers take
longer to complete their training than non-stragglers, and
thus, they can potentially slow down the overall FL training
process. Thus, EcoLearn’s second design component focuses
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on determining how many extra clients we need to provision
to mitigate the effect of stragglers.

Existing straggler mitigation techniques use a static ap-
proach, over-provisioning a fixed number of clients per train-
ing round [4, 15, 24]. This over-provisioning creates a trade-
off between carbon cost and training time: increasing replica-
tion reduces training time but raises carbon costs. However,
beyond a certain threshold, adding clients yields diminishing
returns in time reduction, severely limiting carbon savings.
EcoLearn addresses this trade-off by adjusting the replica-
tion rate based on the carbon cost distribution across clients
and over time (Section 4.3). When the carbon cost is high,
EcolLearn selects fewer extra clients, and vice versa.

Our approach, outlined in Algorithm 2, uses the
CarbonTrainTimeTradeoff() function to mitigate strag-
glers by balancing training time against carbon cost. This
decision is governed by two policy weights: Wcarbon and Wtime-
These weights determine the client replication rate (the num-
ber of extra clients provisioned to avoid-stragglers). A higher
@carbon Value directs the function to prioritize carbon sav-
ings by selecting fewer extra clients (low replication rate),
while a higher wyjme value prioritizes speed by selecting more
clients (high replication rate). The outcome of this process is
a carbon-aware selection of clients that optimizes the learn-
ing period while mitigating stragglers.

3.3 CSelect: Carbon-Aware Client Selection

The carbon-aware client selection component is a fundamen-
tal building block of EcoLearn, which aims to select clients
with the lowest carbon cost and highest utility to achieve
high model accuracy. In designing EcoLearn’s client selec-
tion policy, the carbon cost is based on computing’s carbon
intensity (g - COzeq/cycle):

Clcomp = CIenergy/EEcomp

where Clepergy is the carbon intensity of energy (g -
CO,eq/kWh) and EE opp represents a client’s computational
energy efficiency (cycle/kWh). Computing’s carbon inten-
sity depends on both energy’s carbon intensity and each
client’s energy-efficiency. EcoLearn estimates the current
carbon cost when determining which clients to select, which
naturally considers the variations in carbon-intensity over
time. We devise two baseline carbon-aware selection policies:
1 - Carbon-based (carbon). A naive client selection policy
selects K clients in each round with the lowest carbon cost.
While this policy provides the maximum carbon savings, it
ignores clients’ utility in improving the model performance
during client selection, significantly increasing training time
and lowering accuracy due to insufficient data coverage.

2 — Carbon- and utility-based (carbon+utility). The
carbon-based approach effectively reduces the overall carbon
footprint of training; however, selecting clients solely based
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Algorithm 3: ClientSelection
Input :CLP and straggler-aware number of client
(Ncrp-sa), exploration factor (), carbon weight
(wcarbon)’ UtilitY Weight ((‘)util)
Output:Final set of client S
1 A« UtilityCarbonRanking(wcarbons @util)
2 Sexplore < GetUnexploredClients(e - Ncrp-sa, 4)
3 Sexploit < GetExploitationClients((1 —e) - Ncrp-sa,
A)
4 S & Sexplore * Sexploit
5 return S

on carbon can introduce bias [26] which impacts the model
accuracy. Instead, we select clients based on their normalized
utility [4] per unit carbon in each round. We call this policy
a “utility+carbon” aware client selection policy.

For a given client k, we define this efficiency metric as:

U D 1
B = = = | f' X |— Z Loss(i)?.
Ck Ck |Dk|

ieDy

where, Uy, is the statistical utility, and C]’c represents the in-
stantaneous computing’s carbon intensity associated with
client k at location x. |Dy| is the total number of training
samples from client k, and Loss(i) is the training loss for sam-
ple i. Clients with higher accumulated losses are considered
more significant for future rounds.

This policy outperforms the accuracy of a simple carbon-
based approach by incorporating utility alongside carbon
cost when selecting clients. While it effectively reduces the
overall carbon footprint of FL training, the potential exclu-
sion of high-utility, high-carbon clients limits model accu-
racy compared to carbon-agnostic utility-based approaches,
which may represent an acceptable but undesirable trade-off.
Thus, making existing carbon-agnostic utility-based tech-
niques carbon-aware is insufficient, as it significantly reduces
accuracy (shown in Section 4.2). This limitation motivates
EcolLearn ’s additional optimizations.

3.4 EcoLearn’s Policy

EcolLearn’s policy combines the functionality of all the pre-
vious modules, as described in Algorithm 4. At the start of
training, EcoLearn’s client selection policy initiates by se-
lecting clients in the first round to calculate utility values,
which are then stored in a client utility database. The process
begins by selecting M X N clients, where M is a fraction in
the range [0, 1], and N denotes the total number of clients.
In subsequent rounds, EcolLearn receives a list of clients (1)
and ranks them based on E; Algorithm 3-line 1. Since the
utility Uy is determined only after a client participates in
training, sampling all clients individually becomes imprac-
tical for large numbers. To address this, EcoLearn uses an
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Figure 11: Effect of varying detection threshold.
exploration-exploitation technique, balancing between utiliz-
ing clients with known utilities (exploitation) and exploring
new clients to identify those with high utility (exploration).
The system selects (exploits) (1 — €) X Nerp-sa clients from
the already explored clients in the A list (line 3), while the
remaining € X N¢rp_sa clients are selected from the unex-
plored client set (line 2). Here, € takes values in the range
[0, 1], controlling the rate of exploration.

Simultaneously, CScale is monitoring for the start of CLP.
If the CLP has not yet started, it returns a default value for
the number of clients (i.e., M X N). Once CLP starts, it uses
the scaling policies to determine the number of clients for
the next round. In either scenario, the number of clients
provided by the CScale module is passed to the CProv mod-
ule, which adds the extra number of clients based on the
value it received (Ncrp) and the average carbon intensity
across clients. The final number of clients is then passed to
the CSelect module, which selects specific clients based on
their normalized utility per carbon values while accounting
for the need to explore new clients for utility estimation.
As discussed in Section 2.3, the utility of the clients that
have already participated in the training process decreases
over time, and the unexplored clients are highly likely to
have higher utility, which helps with selecting high-value
clients at the start. This also ensures that EcoLearn does
not repeatedly select the same clients during the training
process, which could introduce bias and negatively impact
model performance. For each round, we get the final set of
clients that should participate in the training process. These
rounds continue until the global model reaches the training
time threshold or hits the test target accuracy.

4 EcolLearn Evaluation

We next present our evaluation methodology (Section 4.1),
evaluate EcoLearn’s three core design components (Sec-
tion 4.2 to Section 4.4), and analyze EcolLearn’s generaliz-
ability across real-world datasets (Section 4.5).

4.1 Evaluation Methodology

We present our evaluation methodology, covering (1) imple-
mentation and compute resources, (2) training datasets and
models, (3) carbon cost traits, and (4) baseline policies.
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Algorithm 4: EcoLearn Framework

Input: clp policy P, exploration factor €, stopping criteria
A, CLP threshold 7geyiy, carbon cost weight wearbon,
training time weight wiime, utility weight w1,
minimum clients Ny

Output: final model parameters Ogy,)

1 while A # true do

2 Ncrp « ClientScaling(P, Tderivs Nmin)

3 Ncrp-sa < StragglerProv(NcLp, @earbons @time)
4 S « ClientSelection(Ncrp-sA, @carbons @utils €)
5 StartTraining(clients_round)

6 n«o0

7 while n < N¢crp do

8 ‘ n « ClientsFinishTraining()

9 Ofinal < UpdateModelParams(n)

10 return Og,

Implementation. Our implementation extends the Flower
framework [14], which emulates the communication be-
tween a global server and geographically distributed clients.
We use PyTorch as the underlying ML library within Flower.
We leverage Flower’s Virtual Client Engine (VCE) to config-
ure and manage resources, enabling efficient FL execution.
The virtual clients are implemented using Ray [27].

We implement a custom aggregation strategy within
the Flower framework to support carbon- and utility-
aware client selection, carbon-aware straggler provision-
ing, and time-varying client scaling, based on EcolLearn
’s design (Section 3). Specifically, we design a custom
select_clients() method that selects clients by jointly
optimizing statistical utility and carbon cost in each train-
ing round. To support straggler mitigation, we implement
a custom fit_clients() method within the server, which
enables over-provisioning by launching training with addi-
tional clients. This method tracks responses and terminates
the round as soon as the target number of updates is received.
Our strategy also extends configure_fit() to integrate
adaptive scaling based on carbon load phases (CLP). During
CLP, the number of clients is scaled up to exploit low-carbon
availability and scaled down when the CLP ends. This behav-
ior is governed by a policy defined through tunable scaling
parameters, as detailed in Section 3.1. Our implementation
adds approximately 2000 lines of code.

Experimental setup. We evaluate EcolLearn on a cluster
of 40 NVIDIA GTX 1080Ti and 6 NVIDIA RTX 8000 GPUs to
emulate a medium-to-large-scale FL setup. We emulate up
to 1,000 clients in the FL training, representing large-scale
edge deployments using Flower [14]. Our emulation and
evaluation setup is comparable to or larger than that used in
prior work on optimizing FL training [4, 5, 13, 24].

Datasets and models. We use three datasets in our experi-
ments, each with distinct scale and complexity: EMNIST [28],
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Table 3: Statistics of datasets used in the evaluation.

Datasets Samples | Emulated | Inherently
Datasets Clients (N) | non-iid
EMNIST 814,255 1,000 No
Shakespeare 422,615 660 Yes
Google Speech | 105,829 100 Yes

Shakespeare [29], and Google Speech Commands [30]. Ta-
ble 3 summarizes their characteristics. EMNIST, a vision
dataset for image recognition, Shakespeare contains dia-
logues for next-character prediction, and Google Speech
Commands for speech recognition tasks.

Inducing stragglers. Recalling Section 2.3, stragglers im-
pact FL’s efficiency by increasing training time. To enable
realistic FL evaluation and simulate real-world delays, we
induce stragglers in our system using heavy-tailed distribu-
tions [31], meaning some clients fall in the heavy tail and
experience more delay than others.

Achieving non-iid data distributions. We leverage the
Fang distribution [32] to precisely control and quantify the
impact of data heterogeneity (non-iid ness). The level of
“non-iid ness” is controlled using a parameter, k, which
ranges from 0 (fully iid) to 1 (fully non-iid). At k = 1,
a single client contains only one class with no representation
of other classes. At k = 0, all clients hold local data of all
classes in equal proportions. For 0 < x < 1, the degree of
non-iid ness ranges from mild to extreme non-iid.

Detection threshold (7geriy) in CLP. As mentioned in
Section 3.1, if the magnitude of the derivative falls below
a threshold (74eriv), EcoLearn marks that point as the con-
clusion of CLP. Changing the value of this threshold im-
pacts both the accuracy and the carbon cost of training. As
Tderiv increases, CLP consists of fewer rounds, causing it to
shrink. Consequently, both accuracy and carbon footprint
decrease, as EcoLearn utilizes a larger number of clients in
fewer rounds. Conversely, a smaller 74y results in better
accuracy at the cost of higher carbon emissions. We pro-
vide a sensitivity analysis for this threshold in Figure 11,
which informed our choice of 74eriy = 0.005 from a tuned
range of 0.0005 < Tgeriv < 0.03. The effectiveness of the
EcolLearn, which incorporates our CLP detection method,
is demonstrated in an end-to-end comparison against the
criticalFL baseline in Section 4.4, Figure 18 and Figure 19.

Client scaling factors. In Section 3.1, we discussed three
client scaling policies that vary the number of clients during
and after CLP. We follow the pattern a; > a3 > «@; and
B1 > Ps > Pa, setting the scaling factor values as: a; = 0.01,
ay; =2, a3 = 0.015, and ,81 =2, ﬁz =0.01, ﬂ?, = 0.015. These
scaling factors (inspired but distinct from prior work [12, 13])
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Figure 12: Accuracy comparison of baseline against
EcoLearn’s non-CLP policies on the EMNIST dataset (A
higher accuracy is better).
simulate different scaling behaviors, including steady scale-
up, rapid scale-down, rapid scale-up, steady scale-down, and
moderate scale-up and scale-down respectively.

Model parameters. We train ResNet-18 [33] on EMNIST for
image classification, a two-layer LSTM [34] on Shakespeare
for next character prediction, and KWT-1 [35] on Google
Speech for speech classification. Initial learning rates were
0.01 for EMNIST, 0.001 [35] for Google Speech, and 0.8 [34]
for Shakespeare, with batch sizes of 20 for EMNIST and
Shakespeare, and 16 for Google Speech.

We use FedAvg [2] as the aggregation strategy across all
datasets and selection policies as it is the commonly used
in practice and in baseline models. Other techniques like
SCAFFOLD [36] or FedProx [34] can be used in future work.

Baseline policies. Below, we present the baseline ap-
proaches that we compare EcolLearn with.

(1) Random selection. Random client selection [15, 19]
ensures fairness and reduces bias. However, it extends
training time by including clients with less value or noisy
data, leading to slower learning and more rounds to reach
the desired accuracy.

(2) Guided selection - Oort. As mentioned in Section 2.2
Oort [4] employs a guided participant selection approach
to prioritize clients with higher statistical utility to maxi-
mize system efficiency. This approach enhances time-to-
accuracy by utilizing client data, significantly improving
model performance and outperforming random selection.

To mitigate stragglers’ induced delays, all the policies
shown in Figure 12 to Figure 14 over-provision clients using

a 1.3K rule. Thus, provisioning 30% more clients than the

K required, training all 1.3% clients, and collecting updates

from %K clients that respond the fastest.

Evaluation Metric. To evaluate the performance and car-
bon footprint of carbon-aware and carbon-agnostic selection
policies, we train them for the same duration and compare
their accuracy and carbon cost. This approach offers a better
evaluation metric than the time to reach a target accuracy, as
it avoids infinite carbon costs and training times for policies
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Figure 14: Carbon costs for client selection policies,
plotted in comparison with the random baseline. (A
lower percentage value is better.)

that never reach the target. We use the utility-based base-
line as a benchmark, training all policies for a time T,,, the
convergence time for the utility-based approach. We report
results across 10 runs of each experiment.

4.2 Carbon-Aware Client Selection

Here, we evaluate the performance and carbon cost of
carbon-aware (carbon- and utility+carbon based) poli-
cies against carbon-agnostic (random and utility-based) base-
lines. These policies exclude the CLP and carbon-aware strag-
gler mitigation, discussed in our final policy in Section 4.4.

Accuracy. Figure 12 shows the accuracy for the above-
discussed selection policies at a non-iid level of 0.9, with
the x-axis representing wall-clock time (in hours). All poli-
cies are trained for the same duration—16 hours, equivalent
to the utility-based selection’s convergence time. Baseline
strategies—utility-based and random selection—are shown
by dashed magenta and dotted blue lines. Carbon-aware poli-
cies, carbon-based and utility+carbon, are represented by
dotted orange and solid green lines, respectively.

At 0.9 non-iid, Figure 13 shows that the carbon-aware
utility-based selection policy, i.e., utility+carbon, out-
performs both random and carbon-based approaches by
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Figure 15: Impact of client replication on training time
and carbon cost for straggler mitigation.

selecting high-utility, low-carbon-cost clients. The utility-
based selection achieves the highest accuracy, surpass-
ing utility+carbon by 6.4%, and both random and
carbon-based approaches by approximately 17%. The
utility+carbon policy achieves approximately 10% higher
accuracy than the carbon-based and random baselines. This
result demonstrates that incorporating both utility and car-
bon cost into the client selection process leads to better model
performance than random selection alone.

However, as discussed in Section 3.3, it is still less effective
than the purely utility-based selection, where the introduc-
tion of carbon awareness reduces accuracy (by 6.4% in this
case). This degradation stems from the trade-off between
maximizing utility (which improves performance) and mini-
mizing carbon cost, where clients with lower carbon costs
may not necessarily have high utility, thus yielding lower
model accuracy. As we show in Section 4.4, EcoLearn lever-
ages this insight by selecting clients with higher utility per
unit of carbon during the CLP, effectively narrowing the
accuracy gap between utility+carbon and utility-based se-
lection, and achieving performance comparable to the latter.

Carbon cost. Figure 14, with a non-iid level of 0.9, shows
the carbon cost for training time equivalent to the utility-
based selection’s convergence time. The y-axis shows the
carbon costs of client selection policies in comparison to ran-
dom selection. The utility+carbon outperforms carbon-
agnostic policies, reducing carbon consumption by 86.4%
compared to random and by 85.3% compared to utility-based
selection. While carbon based approach emits the least car-
bon, it suffers a significant performance loss.

Effect of data heterogeneity. Figure 13 shows the effect
of varying non-iid levels on client selection policies. At
low non-iid values (0.1), the final model accuracy is sim-
ilar across all selection policies, as the data is uniformly
distributed among all clients, leading to similar contribu-
tions towards the model’s performance. As the non-iid level
increases to 0.5, differences in accuracy become more pro-
nounced. The utility-based approach performs best in terms
of accuracy by prioritizing clients with higher statistical
utility, due to the pronounced effect of non-iid data across
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clients and some clients contributing more towards the per-
formance of the model than others. However, in terms of
carbon savings, the carbon-aware selection policies perform
better as they prioritize selecting clients based on carbon, giv-
ing more weight to the carbon savings than to the accuracy.
The carbon based approach reduces carbon cost the most
(92% less than the random baseline). The utility+carbon
approach achieves substantial savings of ~#79% and 82.6%
compared to utility-based and random-based, respectively.

At non-iid level of 0.9, the effect of non-iid data across
clients in-terms of clients’ utility is more prominent. We
observe that utility+carbon performs 10% better than ran-
dom and carbon based selections in accuracy, while giving
6.4% less accuracy than utility-based selection. Additionally,
Figure 14 shows that utility+carbon reduces carbon con-
sumption by 86.4% compared to random and 85.3% com-
pared to utility-based selection.

Key point. Our results show that utility+carbon policy
of EcolLearn consistently outperforms random and utility-
based selection baselines on carbon cost across all the levels of
non-iid while maintaining the accuracy of the model.

4.3 Straggler-Aware Client Provisioning

Recalling Section 3.2, we over-provision clients in each train-
ing round to mitigate the effect of stragglers on training time.
Our design navigates the trade-off between wasted carbon
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Figure 18: Effect of non-iid levels on the accuracy of
EcoLearn’s scaling policies, compared to baselines.

cost due to stragglers and reduced training time due to strag-
gler mitigation. To analyze this trade-off, we compare the
behavior of training time and carbon cost for FL at different
levels of replication, aiming to mitigate delays induced by
stragglers, as shown in Figure 15. The x-axis represents the
replication rate, the left y-axis shows the total training time,
and the right y-axis illustrates the carbon cost of training
across various replication rates. At 0% replication, the train-
ing time is large due to the presence of stragglers, but carbon
cost remains low, since no extra clients are over-provisioned.
Higher replication rates (50%) reduce training time by 33%
but increase carbon cost by over 100%. Beyond a certain repli-
cation rate, training time decreases marginally due to the
heavy-tailed distribution of stragglers.

Based on these observations, we optimize the carbon-time
metric with respect to replication rate, indicating there is a
specific replication rate that maximizes the benefit of reduc-
ing carbon cost relative to the overall training time. Figure 16
shows the relationship between carbon-time and the replica-
tion rate, highlighting a minimum at 20% replication rate
(equivalent to 1.2K). This replication rate provides the most
effective balance between reducing carbon cost and improv-
ing the training time. Our evaluation demonstrates that the
optimal replication rate is strongly influenced by the clients’
carbon cost distribution. Thus optimizing the replication rate
based on the carbon cost distribution can yield significant
improvements in reducing the carbon cost and the training
time, than to use a static 1.3 over-provisioning factor.

4.4 Time-Varying Client Scaling

Recalling Section 4.2, utility+carbon outperforms random
selection but is less effective than utility-based selection due
to its trade-off between utility and carbon cost, leading to
client selection that reduces carbon cost but does not max-
imize accuracy. In this section, we present that by varying
the number of clients within and after CLP, we can increase
the accuracy and further reduce the carbon cost. Addition-
ally, we introduce another baseline approach, criticalFL [13],
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Figure 19: Carbon cost of EcoLearn’s scaling policies
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which dynamically detects CLP in the FL training process
and adaptively determines the number of clients to partic-
ipate in each FL training round. In contrast to EcoLearn’s
selection policy, which selects clients based on their utility
and carbon cost in each round, criticalFL chooses clients
randomly, without considering their utility or carbon cost.

Evaluating EcoLearn’s client selection policy. Based on
the insights about the carbon-aware straggler mitigation
technique discussed in Section 4.3, we adopt a 1.2K repli-
cation rate (provisioning 20% more clients and collecting
results from the first K clients) for EcoLearn’s CLP-based
policies. This configuration avoids stragglers during FL train-
ing and optimizes the associated training time and carbon
cost. In Figure 17, we compare EcoLearn’s CLP-based client
selection policies to the carbon-agnostic baseline policies.
The y-axis represents the performance of all the selection
policies at a non-iid level of 0.9, when trained for the same
duration—16 hours, equivalent to the utility-based selection’s
convergence time. This avoids infinite carbon emissions and
training times for policies that never reach benchmark accu-
racy. We observe that the accuracy of EcoLearn’s CLP-based
client selection policy (SteadyStep) reaches 73.3%, which is
an improvement of 3.5% compared to the non-CLP version
of this policy (utility+carbon technique, discussed in Sec-
tion 4.2). EcoLearn’s selection policy is also comparable to
utility-based selection (74.5%) and performs 11.2% and 16.5%
better than random and criticalFL, respectively. These results
are shown in Figure 18 at a non-iid level of 0.9.

Figure 17 illustrates an increase in accuracy when the crit-
ical learning period ends after around 9 hours of training,
with the slope of this increase depending on the decaying fac-
tor by which we reduce the number of clients once the CLP
ends. This behavior likely arises due to a very high non-iid
level and the abrupt change in the number of clients from a
large to a small number after CLP. Intuitively, learning be-
comes more challenging when many clients are provisioned
within CLP and becomes easier once CLP ends, as there are
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fewer clients with fewer class representations, thus boosting
accuracy. This behavior has been reported in [37] and [38].

Figure 19 shows that, at anon-iid level of 0.9, EcoLearn’s
SteadyStep policy reduces carbon cost by 91.5%, 90.8%, and
93% compared to the random baseline, utility-based selec-
tion, and criticalFL, respectively, while maintaining compara-
ble accuracy. Additionally, EcoLearn’s SteadyStep selection
policy, integrated with CLP and carbon-aware straggler miti-
gation, reduces carbon cost by 37.5% and increases accuracy
by 5.2% compared to its non-CLP version (utility+carbon)
when trained for the same duration.

Effect of scaling strategies in CLP. Figure 18 shows,
EcoLearn’s CLP based policies perform comparably in terms
of accuracy across all levels of non-iid. However, Figure 19
shows that the EcoLearn’s CLP based policies significantly
reduce the carbon cost of training across all non-iid levels
compared to the baselines.

Among EcolLearn’s CLP based policies, SteadyStep
achieves the greatest reduction in carbon cost by minimizing
the duration for which a large client base is active during the
training period. As illustrated in Figure 10, SteadyStep strat-
egy gradually increases the number of client during CLP and
quickly drops them afterward, significantly reducing the car-
bon costs. In contrast, RapidTaper incurs higher carbon costs
due to its rapid increase in the number of clients during CLP
and maintaining a large client base for an extended period.
The ModestShift strategy takes a moderate approach in client
ramp-up during CLP and reduction post-CLP, resulting in
higher carbon costs compared to SteadyStep, but lower or
comparable costs to RapidTaper across all non-iid levels.

In iid settings, where client utility is uniform, EcoLearn’s
selection policy naturally defaults to prioritizing carbon cost.
Consequently, in near-iid conditions (non-iid level = 0.1),
EcolLearn’s SteadyStep carbon footprint, shown in Figure 19,
is nearly identical to that of a purely carbon-aware pol-
icy, as seen in Figure 14. This inherent efficiency allows
EcolLearn’s SteadyStep policy to significantly outperform
other approaches, including RapidTaper, ModestShift, and
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other non-CLP baselines. When trained for the same dura-
tion, SteadyStep achieves a carbon cost that is 10.8x, 11.7X,
and 14.4X lower than random selection, utility-based selec-
tion, and criticalFL, respectively.

Pareto-frontier. We can present our problem as a multi-
objective optimization problem between carbon cost and
accuracy, in the form of a Pareto frontier. As we know, the
Pareto frontier is a set of solutions that represents the best
trade-off between all the objective functions, we can use
this information to represent the best trade-off between the
carbon cost and accuracy across multiple clients selection
policies. Figure 20 illustrates the Pareto frontier for the trade-
off between accuracy (y-axis) and the inverse of carbon cost
(x-axis). We aim to maximize both our objective functions as
we want to determine which policies lie on the Pareto fron-
tier by maximizing the accuracy and the carbon reductions.
Figure 20 shows, EcolLearn resides on the Pareto frontier,
signifying its optimal balance between accuracy and carbon
relative to baseline client selection approaches.

Key Point: EcoLearn’s client selection policy (SteadyStep),
integrated with CLP and a carbon-aware straggler mitigation
technique, outperforms all baseline selection policies on carbon
cost across all non-iid levels. It matches or surpasses them in
accuracy while maintaining consistent training times.

4.5 EcoLearn on Real-World Datasets

In the Section 4.2 to Section 4.4, we present the evaluation
results for the EMNIST dataset. Here, we evaluate EcoLearn
with two additional, distinct ML datasets to demonstrate
its generalizability. We use the Shakespeare and the Google
Speech dataset, both are inherently non-iid, i.e., data hetero-
geneous. We compare EcoLearn’s selection policy (SteadyS-
tep) to random and utility-based selection.

Shakespeare. Figure 21(a) illustrates the accuracy of base-
line selection policies and EcoLearn’s selection policy on
the y-axis against wall-clock time (hours) on the x-axis. We
observe similar accuracy across all three selection strate-
gies after training for the same duration, with utility-based
selection performing slightly better. This behavior aligns
with expectations and findings from recent studies [24, 39].
Table 4 shows that EcoLearn achieves a 76.5% and 73.1%
reduction in carbon cost compared to random selection and
utility-based selection when trained for the same duration.

Google Speech. Figure 21(b) shows the accuracy of base-
line selection policies (random- and utility-based) and
EcolLearn’s selection policy on the y-axis against wall-clock
time (hours) on the x-axis. When trained for the same du-
ration, EcolLearn achieves an accuracy of 80.7%, and utility-
based selection achieves 85.8%. EcoLearn performs better
than the random baseline which achieves 74.5% accuracy, as



SEC 25, December 3-6, 2025, Arlington, VA, USA

S Leo

> 30 >

o [5)

s €40 -

8 20 utility —— 8 utility ——

2 random === <(E) random -==-=-=
10 EcolLearn ===~ 20 EcolLearn -------

0 0

2_ 4 6 8
Time (hours)

(b) Google Speech

2 4 6 8
Time (hours)
(a) Shakespeare

Figure 21: Accuracy comparison of EcoLearn against
the random and utility-based baselines when trained
on Shakespeare and Google Speech datasets.

shown in Table 4. While we sacrifice accuracy, EcoLearn re-
duces carbon cost by a huge margin, surpassing both random
and utility-based client selection approaches with carbon
reductions up to 65.7% and 68%, respectively. This shows the
fundamental trade-off between accuracy and carbon cost.

Key Point: EcolLearn outperforms the carbon-agnostic base-
lines across different ML models and datasets suggesting that
its carbon cost and accuracy tradeoffs are generalizable.

5 Related Work

Data distribution. FL uses privacy-preserving distributed
algorithms [40, 41], keeping data on clients’ premises, which
may be geographically diverse [42]. Unlike traditional ML,
which assumes i.i.d data [43], FL handles data from dis-
parate probability distributions. We explore FL’s non-i.i.d
challenges [44] in relationship with carbon, utility, and CLP.

Client selection strategies [45, 46]. In FL, a key challenge
is crafting a robust model from a large pool of clients while
minimizing computation and communication overhead. Var-
ious methodologies have emerged to enhance model per-
formance [47], optimize communication cost with the FL
aggregator [2, 12, 34, 48, 49], and reduce the computational
load on the clients [47, 50]. However, identifying clients
whose contributions enhance the global model’s accuracy
significantly remains underexplored. Recent works have in-
troduced a metric of statistical utility [4, 51, 52], which we
leverage in EcoLearn. Others have focused on reducing the
number of clients per round while maintaining convergence
rates [53, 54]. Additionally, FLAME framework [55] assesses
clients’ energy profiles and simulates various energy scenar-
ios across the federation. However, none of these works have
addressed the carbon cost or the impact of diverse selection
strategies during the training process.

Carbon-aware client selection Recent work [56, 57] ex-
plores carbon cost in FL, focusing on measuring the overall
carbon footprint rather than optimizing the carbon foot-
print of operation. Another study [1] optimizes Al model
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Table 4: Different selection policies across datasets.

Selection | Convergence Carbon
Dataset . P
Policies Accuracy Emissions (%)
Utility based 46.2 87.6
Shakespeare Random 459 100
EcoLearn 45.1 23.5
Utility based 85.8 107.3
Google Speech Random 74.5 100
EcoLearn 80.7 34.3

training across geo-distributed data centers by balancing
learning performance and carbon emissions within a fixed
carbon footprint budget. In contrast, our approach focuses
on dynamically reducing carbon emissions by varying the Al
workload (varying number of selected clients for training),
and we can achieve better overall performance and greater
carbon reduction. Additionally, FedZero [24] uses renewable
resources to reduce carbon costs. This work is orthogonal
to EcoLearn, as it has different assumptions and constraints.
In particular, FedZero only selects clients with zero-carbon
energy, which may result in some clients being unavailable
for extended periods, thereby increasing the training time.

Critical learning period Recent studies highlight the Crit-
ical Learning Period (CLP) in shaping DNN model quality
in centralized ML [58, 59]. Insufficient data during CLP can
cause permanent model degradation. This concept extends
to FL, where early learning phases can significantly influ-
ence the final accuracy [12, 13] and increase vulnerability to
adversarial attacks [60]. EcoLearn leverages CLP insights to
explore optimal client addition or removal rates during and
after CLP for better performance.

6 Conclusion

We introduce EcolLearn, which leverages clients’ varying
carbon cost. EcoLearn selects clients based on their carbon
cost and statistical utility to reduce carbon emissions, while
maintaining accuracy. Additionally, our investigation into
critical learning periods inspired dynamic client selection,
and scaling of clients to optimize cost without a significant
impact on accuracy. To further reduce carbon, we optimize
the tradeoff between wasted carbon due to stragglers and
reduced training time due to straggler mitigation techniques.
Our evaluation shows that EcoLearn reduces the carbon
footprint of FL training (by up to 10.8X) while maintaining
model accuracy and training time (within ~1%) compared to
state-of-the-art approaches.
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