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We introduce and study the online pause and resume problem. In this problem, a player attempts to find the 𝑘

lowest (alternatively, highest) prices in a sequence of fixed length 𝑇 , which is revealed sequentially. At each

time step, the player is presented with a price and decides whether to accept or reject it. The player incurs a

switching cost whenever their decision changes in consecutive time steps, i.e., whenever they pause or resume

purchasing. This online problem is motivated by the goal of carbon-aware load shifting, where a workload

may be paused during periods of high carbon intensity and resumed during periods of low carbon intensity

and incurs a cost when saving or restoring its state. It has strong connections to existing problems studied in

the literature on online optimization, though it introduces unique technical challenges that prevent the direct

application of existing algorithms. Extending prior work on threshold-based algorithms, we introduce double-
threshold algorithms for both the minimization and maximization variants of this problem. We further show

that the competitive ratios achieved by these algorithms are the best achievable by any deterministic online

algorithm. Finally, we empirically validate our proposed algorithm through case studies on the application of

carbon-aware load shifting using real carbon trace data and existing baseline algorithms.
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1 INTRODUCTION
This paper introduces and studies the online pause and resume problem (OPR), considering both

minimization (OPR-min) and maximization (OPR-max) variants. In OPR-min, a player is presented
with time-varying prices in a sequential manner and decides whether or not to purchase one unit

of an item at the current price. The player must purchase 𝑘 units of the item over a time horizon

of 𝑇 and they incur a switching cost whenever their decision changes in consecutive time steps,

i.e., whenever they pause or resume purchasing. The goal of the player is to minimize their total

cost, which consists of the aggregate price of purchasing 𝑘 units and the aggregate switching cost

incurred over 𝑇 slots. In OPR-max, the setting is exactly the same, but the goal of the player is to

maximize their total profit, and any switching cost that they incur is subtracted. In both cases, the

price values are revealed to the player one by one in an online manner, and the player has to make

a decision without knowing the future values.

Our primary motivation for introducing OPR is the emerging importance of carbon-aware com-

puting and, more specifically, carbon-aware temporal workload shifting, which has seen significant

attention in recent years [1, 6, 36, 47]. In carbon-aware temporal workload shifting, an interruptible

and deferrable workload may be paused during periods of high carbon intensity and resumed during

periods of low carbon intensity. The workload must be running for 𝑘 units of time to complete and

must be completed before its deadline 𝑇 . However, pausing and resuming the workload typically

comes with overheads such as storing the state in memory and checkpointing. For example, an

empirical study [20] shows that this overhead can nullify any savings in carbon emissions from

temporal shifting if the job is interrupted frequently. Moreover, with the rise of big ML training

workloads, such as the training, fine-tuning, and inference of large language models (LLM), data

center workloads’ memory footprints are frequently in the hundreds of GBs [37, 41, 48]. These

emerging workloads will result in high checkpoint-and-restore overheads, which must be con-

sidered in carbon-aware scheduling. This motivates adding a switching cost in OPR, since a naïve
algorithm that does not account for the interruptions’ overhead may frequently checkpoint and, in

some cases, increase carbon emissions beyond a carbon-agnostic execution.

The objective of temporal workload shifting is to minimize the total carbon footprint of running

the workload, which includes both the original compute demand and the overhead due to pausing

and resuming (a.k.a., the switching cost). We consider a worst-case performance objective based on

competitive analysis, defined explicitly in Section 2, wherein we seek to find an effective algorithm

that is robust to uncertain and nonstochastic fluctuations in price (or carbon intensity in the context

of carbon-aware load shifting). We note that even though statistical modeling of grid carbon

intensity has been explored [31], we focus on developing worst-case optimized algorithms as the

intended application has nonlinearity and nonstationarity, which complicate the task of designing

a single probabilistic model to solve this problem.

OPR also captures other interesting applications with highly variable time-varying costs where

switching frequently is undesirable. A related example is the carbon-aware electric vehicle (EV)

charging problem, which considers when to charge an EV with respect to the time-varying avail-

ability of carbon-free electricity, a charging deadline (e.g., set by the EV owner), and battery health

design goals (i.e., a constant charging rate is better for battery longevity) [52]. When the charger is

non-adaptive (i.e., the charging rate is either 0 or the maximum rate), the problem reduces exactly

to OPR. Beyond these “carbon-aware” applications, there are additional examples that deal with

pricing, such as managing grid-scale energy storage with respect to real-time prices in the wholesale

electricity market, where a “smooth” charge or discharge rate is desired [49]. Another example

is renting spot virtual machines from a cloud service provider in the setting where pricing is set

according to supply-demand dynamics [2, 40, 53].
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On the theory front, the OPR problem has strong connections to various existing problems in

the literature on online optimization. We extensively review the prior literature in Section 7 and

focus on the most relevant theoretical problems below. The OPR problem is a generalization of the

𝑘-search problem [23, 29], which belongs to the broader class of online conversion problems [44],

a.k.a., time series search and one-way trading [15]. In the minimization variant of the 𝑘-search

problem, an online decision-maker aims to buy 𝑘 units of an item for the least cost over a sequence

of time-varying cost values. At each step, a cost value is observed, and the decision is whether or not

to buy one unit at the current observed cost without knowing the future values (see Section 2.2 for

a deeper discusssion of 𝑘-search). In contrast to 𝑘-search, the OPR problem introduces the additional

component of managing the switching cost, which poses a significant additional challenge in

algorithm design.

The existence of the switching cost in OPR connects it to the well-studied problem of smoothed

online convex optimization (SOCO) [25], also known as convex function chasing (CFC) [17], and its

generalizations including metrical task systems (MTS) [7]. In SOCO, a learner is faced with a sequence

of cost functions 𝑓𝑡 that are revealed online, and must choose an action 𝑥𝑡 after observing 𝑓𝑡 . Based

on that decision, the learner incurs a hitting cost, 𝑓𝑡 (𝑥𝑡 ) as well as a switching cost, ∥𝑥𝑡 − 𝑥𝑡−1∥,
which captures the cost associated with changing the decision between rounds. In contrast to SOCO,
OPR includes the long-term constraint of satisfying the demand of 𝑘 units over the horizon𝑇 , which

poses a significant challenge not present in SOCO-like problems.

The coexistence of these differentiating factors, namely the switching cost and the long-term
deadline constraint, make OPR uniquely challenging, and means that prior algorithms and analyses

for related problems such as 𝑘-search and SOCO cannot be directly adapted.

Contributions.We introduce online algorithms for the minimization and maximization variants

of OPR and show that our algorithms achieve the best possible competitive ratios. We also evaluate

the empirical performance of the proposed algorithms on a case study of carbon-aware load shifting.

The details of our contributions are outlined below.

Algorithmic idea: Double-threshold. To tackle OPR, we focus our efforts on online threshold-based

algorithms (OTA), the prominent design paradigm for classic problems such as 𝑘-search [23, 29],

one-way trading [15, 44], and online knapsack problems [45, 50, 54]. In the 𝑘-min search problem,

for example, a threshold-based algorithm specifies 𝑘 threshold values and chooses to trade the 𝑖-th

item only if the current price is less than or equal to the value suggested by the 𝑖-th threshold value.

Direct application of prior OTA algorithms to OPR results in undesirable behavior (such as fre-

quently changing decisions) since their threshold function design is oblivious to the switching cost

present in OPR. To address this challenge, we seek an algorithm that can simultaneously achieve

the following behaviors: (1) when the player is in “trading mode,” they should not impulsively

switch away from trading in response to a price that is only slightly worse, since this will result

in a switching penalty; and (2) the player should not switch to “trading mode” unless prices are

sufficiently good to warrant the switching cost. These two ideas motivate an algorithm design

that uses two distinct threshold functions, each of which captures one of the above two cases.

We present our algorithms DTPR-min and DTPR-max for OPR-min and OPR-max, respectively, in
Section 3, which build upon this high-level idea of a double-threshold.

Main results. While OTA algorithms are intuitive and simple to describe, it is highly challenging

to design threshold functions that lead the corresponding algorithms to be competitive against the

offline optimum. The addition of switching cost in OPR further exacerbates the technical challenge

of designing optimal threshold functions. The key result which enables our double-threshold

approach is a technical observation (see Observation 3), which shows that the difference between
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the functions guiding the algorithm’s decisions should be exactly 2𝛽 , where 𝛽 represents the fixed

switching cost incurred by changing the decision in OPR.
Identifying this relationship between the two threshold functions significantly facilitates the

competitive analysis of both DTPR-min and DTPR-max, enabling our derivation of a closed form of

each threshold. Using this idea, we characterize the competitive ratios of DTPR-min and DTPR-max
as a function of problem parameters, including an explicit dependence on the magnitude of the

switching cost 𝛽 (see Theorems 4 and 5). Furthermore, we derive lower bounds for the competitive

ratio of any deterministic online algorithm, showing that our proposed algorithms are optimal

for this problem (formal statements in Theorems 8 and 9). The competitive ratios we derive for

both DTPR-min and DTPR-max exactly recover the best prior competitive results for the 𝑘-search

problem [29], which corresponds to the case of 𝛽 = 0 in OPR, i.e., no switching cost. Formal

statements and a more detailed discussion of our main results are presented in Section 4.

Case study. Finally, in Section 6, we illustrate the performance of our proposed algorithm by

conducting an experimental case study simulating the carbon-aware load shifting problem. We

utilize real-world carbon traces from Electricity Maps [32], which contain carbon intensity values

for grid-sourced electricity across the world. Our experiments simulate different strategies for

scheduling a deferrable and interruptible workload in the face of uncertain future carbon intensity

values. We show that our algorithm’s performance significantly improves upon existing baseline

methods and adapted forms of algorithms for related problems such as 𝑘-min search.

2 PROBLEM FORMULATION AND PRELIMINARIES
We begin by formally introducing the OPR problem and providing background on the online

threshold-based algorithm design paradigm, which is used in the design of our proposed algorithms.

Table 1 summarizes the core notations for OPR. Recall that this formulation is motivated by the

setting of carbon-aware temporal workload shifting, as described in the introduction.

2.1 Problem Formulation
We present two variants of the online pause and resume problem (OPR).1 In OPR-min (OPR-max)
a player must buy (sell) 𝑘 ≥ 1 units of some asset (one unit at each time step) with the goal of

minimizing (maximizing) their total cost (profit) within a time horizon of length 𝑇 . At each time

step 1 ≤ 𝑡 ≤ 𝑇 , the player is presented with a price 𝑐𝑡 , and must immediately decide whether to

accept this price (𝑥𝑡 = 1) or reject it (𝑥𝑡 = 0). The player is required to complete this transaction for

all 𝑘 units by some point in time 𝑇 . Both 𝑘 and 𝑇 are known in advance. Thus, the requirement

of 𝑘 transactions is a hard constraint, i.e.,

∑𝑇
𝑡=1

𝑥𝑡 = 𝑘 , and if at time 𝑇 − 𝑖 the player still has 𝑖

units remaining to buy/sell, they must accept the prices in the subsequent 𝑖 slots to accomplish 𝑘

transactions.

Additionally, in both variants of OPR, the player incurs a fixed switching cost 𝛽 > 0 whenever they

decide to change decisions between two adjacent time steps (i.e., when ∥𝑥𝑡−1 −𝑥𝑡 ∥ = 1). We assume

that 𝑥0 = 0 and 𝑥𝑇+1 = 0, implying that any player must incur a minimum switching cost of 2𝛽 ,

once for switching “on” and once for switching “off”. While the player incurs at least a switching

cost of 2𝛽 , note that the total switching cost incurred by the player is bounded by the size of the

asset 𝑘 since the switching cost cannot be larger than 𝑘2𝛽 .

1
We use OPR whenever the context is applicable to both minimization (OPR-min) and maximization (OPR-max) variants of
the problem, otherwise, we refer to the specific variant. The same policy applies to DTPR, our proposed algorithm for OPR.
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Table 1. A summary of key notations

Notation Description
𝑘 ∈ N Number of units which must be bought (or sold)

𝑇 Deadline constraint; the player must buy (or sell) 𝑘 units before time 𝑇

𝑡 ∈ [1,𝑇 ] Current time step

𝑥𝑡 ∈ {0, 1} Decision at time 𝑡 . 𝑥𝑡 = 1 if price 𝑐𝑡 is accepted, 𝑥𝑡 = 0 if 𝑐𝑡 is not accepted

𝛽 Switching cost incurred when algorithm’s decision 𝑥𝑡 ≠ 𝑥𝑡−1

𝑈 Upper bound on any price that will be encountered

𝐿 Lower bound on any price that will be encountered

\ = 𝑈 /𝐿 Price fluctuation ratio

𝑐𝑡 (Online input) Price revealed to the player at time 𝑡

𝑐min & 𝑐max (Online input) The actual minimum and maximum prices in a sequence

In summary, the offline version of OPR-min can be summarized as follows:

min

(
𝑇∑︁
𝑡=1

𝑐𝑡𝑥𝑡

)
︸      ︷︷      ︸
Accepted prices

+
(
𝑇+1∑︁
𝑡=1

𝛽 | |𝑥𝑡 − 𝑥𝑡−1 | |
)

︸                   ︷︷                   ︸
Switching cost

, s.t.,

𝑇∑︁
𝑡=1

𝑥𝑡 = 𝑘,︸      ︷︷      ︸
Deadline constraint

𝑥𝑡 ∈ {0, 1}, ∀𝑡 ∈ [1,𝑇 ], (1)

while the offline version of OPR-max is

max

(
𝑇∑︁
𝑡=1

𝑐𝑡𝑥𝑡

)
−

(
𝑇+1∑︁
𝑡=1

𝛽 | |𝑥𝑡 − 𝑥𝑡−1 | |
)
, s.t.,

𝑇∑︁
𝑡=1

𝑥𝑡 = 𝑘, 𝑥𝑡 ∈ {0, 1}, ∀𝑡 ∈ [1,𝑇 ] . (2)

Of course, our focus is the online version of OPR, where the player must make irrevocable

decisions at each time step without the knowledge of future inputs. More specifically, in both

variants of OPR the sequence of prices {𝑐𝑡 }𝑡 ∈[1,𝑇 ] is revealed sequentially – future prices are unknown
to an online algorithm, and each decision 𝑥𝑡 is irrevocable.

Competitive analysis. Our goal is to design an online algorithm that maintains a small competitive
ratio [7], i.e., performs nearly as well as the offline optimal solution. For an online algorithm ALG
and an offline optimal solution OPT, the competitive ratio for a minimization problem is defined

as: CR(ALG) = max𝜎∈Ω ALG(𝜎)/OPT(𝜎), where 𝜎 denotes a valid input sequence for the problem

and Ω is the set of all feasible input instances. Further, OPT(𝜎) is the optimal cost given this

input, and ALG(𝜎) is the cost of the solution obtained by running the online algorithm over this

input. Conversely, for a problem with a maximization objective, the competitive ratio is defined as

max𝜎∈Ω OPT(𝜎)/ALG(𝜎). With these definitions, the competitive ratio for both minimization and

maximization problems is always greater than or equal to one, and the lower the better.

Note that competitive algorithm development, in its classic worst-case optimized design, cannot

capture data-driven adaptation and stochasticity of data in decision-making. However, beyond

the significance of the theoretical analysis in this framework, competitive algorithms could be

of interest to practitioners since they are robust against adversarial or non-stationary behavior

in the underlying environment. For example, in the context of carbon-aware load shifting, the

carbon intensity values significantly change across the temporal and spatial domains following the

makeup and behavior of an electric grid (e.g., different ISOs and generation mixes; see Figure 9 in

the appendix); and online algorithms are robust to those drastic temporal and spatial variations.

Competitive algorithms are extremely simple to implement, e.g., in OPR, all we need are two

threshold functions to decide the pause and resume decisions. Furthermore, worst-case optimized
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algorithms can potentially be augmented with machine-learned predictions, as explored in e.g.

[3, 4, 12, 30, 35, 44], to achieve the best of both worlds of worst-case and average-case performance.

Assumptions and additional notations. Wemake no assumptions on the underlying distribution of

the prices other than the assumption that the set of prices arriving online {𝑐𝑡 }𝑡 ∈[1,𝑇 ] has bounded
support, i.e., 𝑐𝑡 ∈ [𝐿,𝑈 ] ∀𝑡 ∈ [1, 𝑇 ], where 𝐿 and 𝑈 are known to the player. We also define

\ = 𝑈 /𝐿 as the price fluctuation. These are standard assumptions in the literature for many online

problems, including one-way trading, online search, and online knapsack; and without them the

competitive ratio of any algorithm is unbounded. Most papers in this literature additionally assume

that 𝑈 , 𝐿 > 0 (i.e. the lowest price is still positive), but our design can handle the special case

where 𝐿 = 0, and therefore do not adopt this assumption. We use 𝑐min (𝜎) = min𝑡 ∈[1,𝑇 ] 𝑐𝑡 and
𝑐max (𝜎) = max𝑡 ∈[1,𝑇 ] 𝑐𝑡 to denote the minimum and maximum encountered prices for any valid

OPR sequence 𝜎 .

2.2 Background: Online Threshold-Based Algorithms (OTA)
Online threshold-based algorithms (OTA) are a family of algorithms for online optimization in

which a carefully designed threshold function is used to specify the decisions made at each time

step. At a high level, the threshold function defines the “minimum acceptable quality” that an

arriving input/price must satisfy in order to be accepted by the algorithm. The threshold is chosen

specifically so that an agent greedily accepting prices meeting the threshold at each step will be

ensured a competitive guarantee. This algorithmic framework has seen success in the online search

and one-way trading problems [15, 23, 29, 44] as well as the related online knapsack problem

[45, 50, 54]. In these works, the derived threshold functions are optimal in the sense that the

competitive ratios of the resulting threshold-based algorithms match information-theoretic lower

bounds of the corresponding online problems. As discussed in the introduction, the framework does

not apply directly to the OPR setting, but we make use of ideas and techniques from this literature.

We briefly detail the most relevant highlights from the prior results before discussing how these

related problems generalize to OPR in the next section.

1-min/1-max search. In the online 1-min/1-max search problem, a player attempts to find the

single lowest (respectively, highest) price in a sequence, which is revealed sequentially. The player’s

objective is to either minimize their cost or maximize their profit. When each price arrives, the

player must decide immediately whether to accept the price, and the player is forced to accept

exactly one price before the end of the sequence. For this problem, El-Yaniv et al. [15] presents a

deterministic threshold-based algorithm. The algorithm assumes a finite price interval, i.e., the

price is bounded by the interval [𝐿,𝑈 ], where 𝐿 and𝑈 are known. Then, it sets a constant threshold

Φ =
√
𝐿𝑈 , and the algorithm simply selects the first price that is less than or equal to Φ (for the

maximization version, it accepts the first price greater than or equal to Φ). This algorithm achieves

a competitive ratio of

√︁
𝑈 /𝐿 =

√
\ , which matches the lower bound; hence, it is optimal [15].

𝑘-min/𝑘-max search. The online 𝑘-min/𝑘-max search problem extends the 1-min/1-max search

problem – a player attempts to find the 𝑘 lowest (conversely, highest) prices in a sequence of prices

revealed sequentially. The player’s objective is identical to the 1-min/1-max problem, and the player

must accept at least 𝑘 prices by the end of the sequence. Several works have developed a known

optimal deterministic threshold-based algorithm for this problem, including [15, 29]. Leveraging

the same assumption of a finite price interval [𝐿,𝑈 ], the threshold function is a sequence of 𝑘

thresholds {Φ𝑖 }𝑖∈[1,𝑘 ] , which is also called the reservation price policy. At each step, the algorithm

accepts the first price, which is less than or equal to Φ𝑖 , where 𝑖 − 1 is the number of prices that
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have been accepted thus far (for the maximization version, it accepts the first price which is ≥ Φ𝑖 ).

In the 𝑘-min setting, this algorithm is 𝛼-competitive, where 𝛼 is the unique solution of

1 − 1/\
1 − 1/𝛼 =

(
1 + 1

𝛼𝑘

)𝑘
. (3)

For the 𝑘-max variant, this algorithm is 𝜔-competitive, where 𝜔 is the unique solution of

\ − 1

𝜔 − 1

=

(
1 + 𝜔

𝑘

)𝑘
. (4)

The sequence of thresholds {Φ𝑖 }𝑖∈[1,𝑘 ] for both variants of the problem are constructed by

analyzing possible input cases, “hedging” against the risk that future (unknown) prices will jump to

the worst possible value, i.e., 𝑈 for 𝑘-min search, 𝐿 for 𝑘-max search. These potential cases can be

enumerated for different values of 𝑖 , where 0 ≤ 𝑖 ≤ 𝑘 denotes the number of prices accepted so far.

By simultaneously balancing the competitive ratios for each of these cases (setting each ratio equal

to the others), the optimal threshold values and the optimal competitive ratios are derived. We refer

to this technique as the balancing rule and a rigorous proof of this approach, with corresponding

lower bounds, can be found in [29]. The lower bounds highlight that the 𝛼 and 𝜔 which solve the

expressions for the competitive ratios above are optimal for any deterministic 𝑘-min and 𝑘-max

search algorithms, respectively. Further, 𝛼 and 𝜔 provide insight into a fundamental difference

between the minimization and maximization settings of 𝑘-search. As discussed in [29], for large \ ,

the best algorithm for 𝑘-max search is roughly 𝑂 (𝑘 𝑘
√
\ )-competitive, while the best algorithm for

𝑘-min search is at best𝑂 (
√
\ )-competitive. Similarly, for fixed \ and large 𝑘 , the optimal competitive

ratio for 𝑘-max search is roughly 𝑂 (ln\ ), while the optimal competitive ratio for 𝑘-min search

converges to 𝑂 (
√
\ ).

3 DOUBLE THRESHOLD PAUSE AND RESUME (DTPR) ALGORITHM
A fundamental challenge in algorithm design for OPR is how to characterize threshold functions

that incorporate the presence of switching costs in their design. Our key algorithmic insight is

to incorporate the switching cost into the threshold function by defining two distinct threshold
functions, where the function to be used for price admittance changes based on the current state

(i.e., whether or not the previous price was accepted by the algorithm).

To provide intuition for the state-dependence of the threshold function, consider the setting

of OPR-min. At a high level, if the player has not accepted the previous price, they should wait

to accept anything until prices are sufficiently low to justify incurring a cost to switch decisions.

On the other hand, if the player has accepted the previous price, they might be willing to accept a

slightly higher price – if they do not accept this price, they will incur a cost to switch decisions.

While this high-level idea is intuitive, characterizing the form of threshold functions such that the

resulting algorithms are competitive is challenging.

The DTPR-min algorithm. Our proposed algorithm, Double Threshold Pause and Resume (DTPR)
for OPR-min is summarized in Algorithm 1. Prior to any prices arriving online, DTPR-min computes

two families of threshold values, {ℓ𝑖 }𝑖∈[1,𝑘 ] and {𝑢𝑖 }𝑖∈[1,𝑘 ] , where ℓ𝑖 ≤ 𝑢𝑖 ∀𝑖 ∈ [1, 𝑘], whose values
are defined as follows.

Definition 1 (DTPR-min Threshold Values). For each integer 𝑖 on the interval [1, 𝑘], the follow-
ing expressions give the corresponding threshold values of 𝑢𝑖 and ℓ𝑖 for DTPR-min.

𝑢𝑖 = 𝑈

[
1 −

(
1 − 1

𝛼

) (
1 + 1

𝑘𝛼

)𝑖−1

]
+ 2𝛽

[(
1

𝑘𝛼
− 1

𝑘
+ 1

) (
1 + 1

𝑘𝛼

)𝑖−1

]
, ℓ𝑖 = 𝑢𝑖 − 2𝛽, (5)
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Algorithm 1 Double Threshold Pause and Resume for OPR-min (DTPR-min)

Input: threshold values {ℓ𝑖 }𝑖∈[1,𝑘 ] and {𝑢𝑖 }𝑖∈[1,𝑘 ] defined in Eq. (5), deadline 𝑇

Output: online decisions {𝑥𝑡 }𝑡 ∈[1,𝑇 ]
1: initialize: 𝑖 = 1

2: while price 𝑐𝑡 arrives and 𝑖 ≤ 𝑘 do
3: if (𝑘 − 𝑖) ≥ (𝑇 − 𝑡) then ⊲ close to the deadline 𝑇, we must accept remaining prices

4: price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1

5: else if 𝑥𝑡−1 = 0 then ⊲ If previous price was not accepted

6: if 𝑐𝑡 ≤ ℓ𝑖 then price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1

7: else price 𝑐𝑡 is rejected, set 𝑥𝑡 = 0

8: else if 𝑥𝑡−1 = 1 then ⊲ If previous price was accepted

9: if 𝑐𝑡 ≤ 𝑢𝑖 then price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1

10: else price 𝑐𝑡 is rejected, set 𝑥𝑡 = 0

11: update 𝑖 = 𝑖 + 𝑥𝑡

where 𝛼 is the competitive ratio of DTPR-min defined in Equation (9).

The role of these thresholds is to incorporate the switching cost into the algorithm’s decisions,

and to alter the acceptance criteria of DTPR-min based on the current state. For OPR-min, the current
state is whether the previous item was accepted, i.e., whether 𝑥𝑡−1 is 0 or 1. As prices are sequentially

revealed to the algorithm at each time 𝑡 , the 𝑖th price accepted by DTPR-min will be the first price

which is at most ℓ𝑖 if 𝑥𝑡−1 = 0, or at most 𝑢𝑖 if 𝑥𝑡−1 = 1. We note that 𝐿 does not explicitly appear

in this definition. As 𝑖 approaches 𝑘 , the values of these thresholds decrease, getting closer to 𝐿

(See Figure 1). Note that, as indicated in Line 4, DTPR-min may be forced to accept the last prices

of the sequence, which can be “worse” than the current threshold values, to satisfy the deadline

constraint of OPR. Since 𝑇 (the deadline) does not appear explicitly in the threshold definition, our

analysis can handle the case where 𝑇 is not known to the online player, and the forced acceptance

is triggered by some external signal.

The DTPR-max algorithm. Pseudocode is summarized in the appendix, in Algorithm 2. The logical

flow of DTPR-max shares a similar structure to that of DTPR-min, with a few important differences

highlighted here. For OPR-max, the 𝑖th price accepted by DTPR-max will be the first price which is at

least 𝑢𝑖 if 𝑥𝑡−1 = 0, or at least ℓ𝑖 if 𝑥𝑡−1 = 1. Further, the threshold functions are defined as follows.

Definition 2 (DTPR-max Threshold Values). For each integer 𝑖 on the interval [1, 𝑘], the follow-
ing expressions give the corresponding threshold values of ℓ𝑖 and 𝑢𝑖 for DTPR-max.

ℓ𝑖 = 𝐿

[
1 + (𝜔 − 1)

(
1 + 𝜔

𝑘

)𝑖−1

]
− 2𝛽

[(
𝜔

𝑘
− 1

𝑘
+ 1

) (
1 + 𝜔

𝑘

)𝑖−1

]
, 𝑢𝑖 = ℓ𝑖 + 2𝛽, (6)

where 𝜔 is the competitive ratio of DTPR-max defined in Equation (10).

In Figures 1 and 2, we plot threshold values for DTPR-min and DTPR-max, respectively, using
example parameters of 𝑈 = 30, 𝐿 = 5, 𝑘 = 10, and 𝛽 = 3. We annotate the difference of 2𝛽 between

ℓ𝑖 and 𝑢𝑖 ; recall that each of these thresholds corresponds to a current state for DTPR, i.e. whether
the previous item was accepted. Note that the DTPR-min threshold values decrease as 𝑘 gets larger,

while the DTPR-max threshold values increase as 𝑘 gets larger. At a high-level, each 𝑖th threshold

“hedges” against a scenario where none of the future prices meet the current threshold. In this

case, even if the algorithm is forced to accept the worst possible prices at the end of the sequence,

we want competitive guarantees against an offline OPT. Such guarantees rely on the fact that in
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2β

Fig. 1. DTPR-min thresholds ℓ𝑖 and 𝑢𝑖 for 𝑖 ∈ [1, 𝑘]
plotted using example parameters (𝑘 = 10).

2β

Fig. 2. DTPR-max thresholds 𝑢𝑖 and ℓ𝑖 for 𝑖 ∈ [1, 𝑘]
plotted using example parameters (𝑘 = 10).

the worst-case, OPT cannot accept prices that are all significantly better than DTPR’s 𝑖th “unseen”

threshold value because such prices did not exist in the sequence.

Designing the Double Threshold Values
A key component of the DTPR algorithms for both variants are the thresholds in Equations (5)

and (6). The key idea is to design the thresholds by incorporating the switching cost into the

balancing rules as a hedge against possible worst-case scenarios. To accomplish this, we enumerate

three difficult cases that DTPR may encounter. (CASE-1): Consider an input sequence where DTPR
does not accept any prices before it is forced to accept the last 𝑘 prices. Here, the enforced prices in

the worst-case sequence will be 𝑈 for OPR-min and 𝐿 for OPR-max. This sequence occurs only if

no price in the sequence meets the first threshold for acceptance. On the other hand, in the case

that DTPR does accept prices before the end of the sequence, we can further divide the possible

sequences into two extreme cases for the switching cost it incurs. (CASE-2): In one extreme, the

algorithm incurs only the minimum switching cost of 2𝛽 , meaning that 𝑘 contiguous prices are

accepted by DTPR. (CASE-3): In the other extreme, DTPR incurs the maximum switching cost of 𝑘2𝛽 ,

meaning that 𝑘 non-contiguous prices are accepted. Intuitively, in order for DTPR to be competitive

in either of these extreme cases, the prices accepted in the latter case should be sufficiently “good”

to absorb the extra switching cost of (𝑘 − 1)2𝛽 .
Given the insight from these cases, we use can use the balancing rule (see Section 2.2) to derive

the two threshold families. Let 𝜎 be any arbitrary sequence for OPR. Given these extreme input

sequences, we now concretely show how to write the balancing rule equations. We consider the

cases of DTPR-min and DTPR-max separately below.

Balancing equations for DTPR-min. To balance between possible inputs for OPR-min, consider
the following examples for three different values of 𝑐min (𝜎) > ℓ, ℓ = {ℓ1, ℓ2, ℓ3}. If 𝑐min (𝜎) > ℓ𝑖 , we

know that OPT cannot do better than 𝑘ℓ𝑖 + 2𝛽 . Suppose that 𝛼 is the target competitive ratio. Then

each term in equation (7) corresponds to a different case (e.g. a possible input), and we solve for the
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threshold values by “balancing” between all of these possible cases:

DTPR-min(𝜎)
OPT(𝜎) ≤ 𝑘𝑈 + 2𝛽

𝑘ℓ1 + 2𝛽︸    ︷︷    ︸
𝑐min (𝜎 )>ℓ1

=
ℓ1 + (𝑘 − 1)𝑈 + 4𝛽

𝑘ℓ2 + 2𝛽
=
𝑢1 + (𝑘 − 1)𝑈 + 2𝛽

𝑘ℓ2 + 2𝛽︸                                                 ︷︷                                                 ︸
𝑐min (𝜎 )>ℓ2

. . . (7)

· · · = ℓ1 + ℓ2 + (𝑘 − 2)𝑈 + 6𝛽

𝑘ℓ3 + 2𝛽
=
ℓ1 + 𝑢2 + (𝑘 − 2)𝑈 + 4𝛽

𝑘ℓ3 + 2𝛽
=
𝑢1 + 𝑢2 + (𝑘 − 2)𝑈 + 2𝛽

𝑘ℓ3 + 2𝛽︸                                                                                                  ︷︷                                                                                                  ︸
𝑐min (𝜎 )>ℓ3

= · · · = 𝛼.

As an example, consider 𝑐min (𝜎) > ℓ2 and the corresponding cases enumerated above. Suppose

DTPR-min accepts one price before the end of the sequence 𝜎 , and the other prices accepted are

all 𝑈 . In the first case, where the competitive ratio is
ℓ1+(𝑘−1)𝑈 +4𝛽

𝑘ℓ2+2𝛽
, we consider the scenario where

DTPR-min switches twice: once to accept the price ℓ1, and once to accept (𝑘 − 1) prices at the end
of the sequence, incurring switching cost of 4𝛽 .

In the second case, where the competitive ratio is
𝑢1+(𝑘−1)𝑈 +2𝛽

𝑘ℓ2+2𝛽
, we consider the hypothetical

scenario where DTPR-min only switches once to accept some value 𝑢1 followed by (𝑘 − 1) prices at
the end of the sequence, incurring switching cost of 2𝛽 . By enumerating cases in this fashion for

the other possible values of 𝑐min (𝜎), we derive a relationship between the lower thresholds ℓ𝑖 and

the upper thresholds 𝑢𝑖 in terms of the switching cost.

Balancing equations for DTPR-max. The same idea extends to balance between possible inputs for

OPR-max. Consider the following examples for a few values of 𝑐max (𝜎). If 𝑐max (𝜎) < 𝑢𝑖 , we know

that OPT cannot do better than 𝑘𝑢𝑖 − 2𝛽 . Suppose that 𝜔 is the target competitive ratio, and we

balance between the following possible cases (e.g. possible inputs):

OPT(𝜎)
DTPR-max(𝜎) ≤ 𝑘𝑢1 − 2𝛽

𝑘𝐿 − 2𝛽︸     ︷︷     ︸
𝑐max (𝜎 )<𝑢1

=
𝑘𝑢2 − 2𝛽

𝑢1 + (𝑘 − 1)𝐿 − 4𝛽
=

𝑘𝑢2 − 2𝛽

ℓ1 + (𝑘 − 1)𝐿 − 2𝛽︸                                                ︷︷                                                ︸
𝑐max (𝜎 )<𝑢2

. . . (8)

· · · = 𝑘𝑢3 − 2𝛽

𝑢1 + 𝑢2 + (𝑘 − 2)𝐿 − 6𝛽
=

𝑘𝑢3 − 2𝛽

𝑢1 + ℓ2 + (𝑘 − 2)𝐿 − 4𝛽
=

𝑘𝑢3 − 2𝛽

ℓ1 + ℓ2 + (𝑘 − 2)𝐿 − 2𝛽︸                                                                                                 ︷︷                                                                                                 ︸
𝑐max (𝜎 )<𝑢3

= · · · = 𝜔.

Solving for the threshold values. Given the above balancing equations for both the minimization

and maximization variants, the next step is to solve for the unknown values of ℓ𝑖 and 𝑢𝑖 . The

following observation summarizes the key insight that enables this. We show that one can express

each ℓ𝑖 in terms of 𝑢𝑖 and 𝛽 , which facilitates the analysis required to solve for thresholds in each

balancing equation (given by Equations (7) and (8)).

Observation 3. By letting 𝑢𝑖 = ℓ𝑖 +2𝛽 ∀𝑖 ∈ [1, 𝑘], we obtain each possible worst-case permutation
of ℓ𝑖 thresholds, 𝑢𝑖 thresholds, and switching cost. Let 𝑦 ∈ [1, 𝑘 − 1] denote the number of switches
incurred by DTPR.
For DTPR-min, suppose that 𝑐min (𝜎) > ℓ𝑗+1. By the definition of DTPR-min, we know that accepting
any 𝑢𝑖 helps avoid a switching cost of +2𝛽 in the worst case. Thus,

𝑗∑︁
𝑖=0

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽 = ℓ𝑖 + . . .︸ ︷︷ ︸
𝑦

+𝑢𝑖 + . . .︸  ︷︷  ︸
𝑗−𝑦

+(𝑘 − 𝑗)𝑈 + (𝑦 + 1)2𝛽 =

𝑗∑︁
𝑖=0

ℓ𝑖 + (𝑘 − 𝑗)𝑈 + ( 𝑗 + 1)2𝛽.
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For DTPR-max, suppose that 𝑐max (𝜎) < 𝑢 𝑗+1. By the definition of DTPR-max, we know that accepting
any ℓ𝑖 helps avoid a switching cost of −2𝛽 in the worst case. Thus,

𝑗∑︁
𝑖=0

ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽 = 𝑢𝑖 + . . .︸  ︷︷  ︸
𝑦

+ ℓ𝑖 + . . .︸ ︷︷ ︸
𝑗−𝑦

+(𝑘 − 𝑗)𝐿 − (𝑦 + 1)2𝛽 =

𝑗∑︁
𝑖=0

𝑢𝑖 + (𝑘 − 𝑗)𝐿 − ( 𝑗 + 1)2𝛽.

With the above observation, for DTPR-min, one can substitute 𝑢𝑖 − 2𝛽 for each ℓ𝑖 . By comparing

adjacent terms in Equation (7), standard algebraic manipulations give a closed form for each 𝑢𝑖

in terms of 𝑢1. Setting
𝑘𝑈 +2𝛽

𝑘 (𝑢1−2𝛽 )+2𝛽
= 𝛼 , we obtain the explicit expression for 𝑢1, yielding a closed

formula for {𝑢𝑖 }𝑖∈[1,𝑘 ] and {ℓ𝑖 }𝑖∈[1,𝑘 ] in Equation (5). Considering the balancing rule in Equation (7)

for the case where 𝑐min (𝜎) ≥ ℓ𝑘+1, it follows that ℓ𝑘+1 = 𝐿, and thus 𝑢𝑘+1 = 𝐿 + 2𝛽 . By substituting

this value into Definition 1, we obtain an explicit expression for 𝛼 as shown in Equation (9).

Conversely, for DTPR-max, we substitute ℓ𝑖 + 2𝛽 for each 𝑢𝑖 . By comparing adjacent terms in

Equation (8), standard methods give a closed form for each ℓ𝑖 in terms of ℓ1. Setting
𝑘 (ℓ1+2𝛽 )−2𝛽

𝑘𝐿−2𝛽
= 𝜔 ,

we obtain the explicit expression for ℓ1, yielding the closed formula for {ℓ𝑖 }𝑖∈[1,𝑘 ] and {𝑢𝑖 }𝑖∈[1,𝑘 ]
in Equation (6). Considering the balancing rule in Equation (8) for the case where 𝑐max (𝜎) ≤ 𝑢𝑘+1,

it follows that 𝑢𝑘+1 = 𝑈 , and thus ℓ𝑘+1 = 𝑈 − 2𝛽 . By substituting this value into Definition 2, we

obtain an explicit expression for 𝜔 as shown in Equation (10).

4 MAIN RESULTS
We now present competitive results of DTPR for both variants of OPR and discuss the significance

of the results in relation to other algorithms for related problems. Our results for the competitive

ratios of DTPR-min and DTPR-max are summarized in Theorems 4 and 5. We also state the lower

bound results for any deterministic online algorithms for OPR-min and OPR-max in Theorems 8

and 9. Proofs of the results for DTPR-min and DTPR-max are deferred to Section 5 and Appendix B,

respectively. Formal proofs of lower bound theorems are given in Appendix D, and a sketch is

shown in Section 5.2. Note that in the competitive results,𝑊 (𝑥) denotes the Lambert𝑊 function,

i.e., the inverse of 𝑓 (𝑥) = 𝑥𝑒𝑥 . It is well-known that𝑊 (𝑥) behaves like ln(𝑥) [21, 43]. We start by

presenting our competitive bounds on DTPR-min and DTPR-max.

Theorem 4. DTPR-min is an 𝛼-competitive deterministic algorithm for OPR-min, where 𝛼 is the
unique positive solution of

𝑈 − 𝐿 − 2𝛽

𝑈 (1 − 1/𝛼) −
(
2𝛽 − 2𝛽

𝑘
+ 2𝛽

𝑘𝛼

) =

(
1 + 1

𝑘𝛼

)𝑘
. (9)

Theorem 5. DTPR-max is an 𝜔-competitive deterministic algorithm for OPR-max, where 𝜔 is the
unique positive solution of

𝑈 − 𝐿 − 2𝛽

𝐿(𝜔 − 1) − 2𝛽
(
1 − 1

𝑘
+ 𝜔

𝑘

) =

(
1 + 𝜔

𝑘

)𝑘
. (10)

These theorems present upper bounds on the competitive ratios, showing their dependence

on the problem parameters. To investigate the behavior of these competitive ratios, in Figures 3

and 4, we show the competitive ratios of both algorithms as problem parameters are varied. More

specifically, in Figure 3, we visualize 𝛼 as a function of 𝛽 and 𝐿, where 𝑘 and𝑈 are fixed. The color

(shown as an annotated color bar on the right-hand side of the plot) represents the order of 𝛼 . If

𝛽 > 0 and 𝐿 → 0, Figure 3 shows that 𝛼 is roughly𝑂 (𝑘), which we discuss further in Corollary 6(a).

In Figure 4, we visualize 𝜔 as a function of 𝛽 and 𝐿, where 𝑘 and 𝑈 are fixed. The color represents

the order of 𝜔 . In the dark blue region of the plot, Figure 4 shows that 𝜔 → ∞ when 𝑏 =
2𝛽

𝐿
→ 𝑘 ,

which provides insight into the extreme case for switching cost when 𝛽 ≳ 𝑘𝐿
2
.
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Fig. 3. DTPR-min: Plotting actual values of competi-
tive ratio 𝛼 for fixed 𝑘 ≥ 1, fixed 𝑈 > 𝐿, and varying
values for 𝐿 and 𝛽 (switching cost). Color represents
the order of 𝛼 for a given setting of \ and 𝛽 .
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Fig. 4. DTPR-max: Plotting actual values of competi-
tive ratio 𝜔 for fixed 𝑘 ≥ 1, fixed𝑈 > 𝐿, and varying
values for 𝐿 and 𝛽 (switching cost). Color represents
the order of 𝜔 for a given setting of \ and 𝛽 .

To obtain additional insight into the form of the competitive ratios in Theorems 4 and 5, we

present the following corollaries for two asymptotic regimes of interest: REGIME-1 captures the
order of the competitive ratio when 𝑘 is fixed and 𝛼 or 𝜔 are sufficiently large, and REGIME-2
captures the order of the competitive ratio when 𝑘 → ∞.

Corollary 6. (a) For REGIME-1, with fixed 𝑘 ≥ 1 and 𝛽 ∈ (0, 𝑈 −𝐿
2

), the competitive ratio of
DTPR-min is

𝛼 ∼
𝑘𝛽

𝑘𝐿 + 2𝛽
+

√︄
𝑘2𝐿𝑈 + 2𝑘𝐿𝛽 + 2𝑘𝑈 𝛽 + 4𝛽2 + 𝑘2𝛽2

𝑘2𝐿2 + 4𝑘𝐿𝛽 + 4𝛽2
, and 𝛼 ∼ 𝑂 (𝑘) for 𝐿 → 0.

(b) Furthermore, for REGIME-2, with 𝑘 → ∞ and 𝑐 =
2𝛽

𝑈
, 𝑐 ∈ (0, 𝑈 −𝐿

𝑈
), the competitive ratio of

DTPR-min is

𝛼 ∼

[
𝑊

( (
𝑐 + 1

\
− 1

)
𝑒𝑐

𝑒

)
− 𝑐 + 1

]−1

.

Corollary 7. (a) For REGIME-1, with fixed 𝑘 ≥ 1 and 𝑏 =
2𝛽

𝐿
, 𝑏 ∈ (0, 𝑘), the competitive ratio of

DTPR-max is

𝜔 ∼ 𝑂

(
𝑘+1

√︂
𝑘𝑘

𝑘\

𝑘 − 𝑏

)
,

and (b) for REGIME-2, with 𝑘 → ∞ and 𝑏 =
2𝛽

𝐿
, 𝑏 ∈ (0, 𝑘), the competitive ratio of DTPR-max is

𝜔 ∼𝑊

(
\ − 1 − 𝑏

𝑒1+𝑏

)
+ 1 + 𝑏.

Corollary 6(a) contextualizes the behavior of 𝛼 (the competitive ratio of DTPR-min) in the

most relevant OPR-min setting (when 𝛽 ∈ (0, 𝑈 −𝐿
2

)). Note that in this minimization setting, as 𝛽

grows, the competitive ratio improves. Let us also briefly discuss the other cases for the switching

cost 𝛽 , and why this interval makes sense. When 𝛽 > 𝑈 −𝐿
2

, the switching cost is large enough

such that OPT only incurs a switching cost of 2𝛽 . In this regime, 𝛼 does not fully capture the

competitive ratio of DTPR-min, since every value in the threshold family {𝑢𝑖 }𝑖∈[1,𝑘 ] is at least 𝑈 ;

in other words, whenever the algorithm begins accepting prices, it will accept 𝑘 prices in a single

continuous segment, incurring minimal switching cost of 2𝛽 . As 𝛽 → ∞, the competitive ratio of

DTPR-min approaches 1. This theoretical result corresponds nicely with the empirical observation

in [20] that a large switching overhead can nullify carbon emission reductions from temporal

shifting if the job is interrupted frequently.
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Conversely, Corollary 7(a) contextualizes the behavior of 𝜔 in the most relevant OPR-max setting

(when 𝛽 ∈ (0, 𝑘𝐿
2
)), but we also discuss the other cases for the switching cost 𝛽 , and why this

interval makes sense. When 𝛽 ≥ 𝑘𝐿
2
, the switching cost is too large, and the competitive ratio may

become unbounded. Note that this is shown explicitly in Figure 4. Consider an adversarial sequence

which forces any OPR-max algorithm to accept 𝑘 prices with value 𝐿 at the end of the sequence. On

such a sequence, even a player which incurs the minimum switching cost of 2𝛽 achieves zero or

negative profit of 𝑘𝐿 − 2𝛽 ≤ 0, and this is not well-defined.

Next, to begin to investigate the tightness of Theorems 4 and 5, it is interesting to consider

special cases that correspond to models studied in previous work. In particular, when 𝛽 = 0, i.e.,

there is no switching cost, OPR degenerates to the 𝑘-search problem [29]. For fixed 𝑘 ≥ 1 and

\ → ∞, the optimal competitive ratios shown by [29] are

√︁
\/2 for 𝑘-min, and

𝑘+1

√
𝑘𝑘\ for 𝑘-max

(see Section 2.2).

Both versions of DTPR exactly recover the optimal 𝑘-search algorithms [29].
2
Figure 3 shows that

if 𝛽 = 0 and 𝐿 → 0, then 𝛼 → ∞, which matches the 𝑘-min result of

√︁
\/2 ∼ ∞. Similarly, Figure 4

shows that if 𝛽 = 0 and 𝐿 → 0, then 𝜔 → ∞, which matches the 𝑘-max result of

𝑘+1

√
𝑘𝑘\ ∼ ∞.

More generally, one can ask if the competitive ratios of DTPR can be improved upon by other

online algorithms outside of the special case of 𝑘-search. Our next set of results highlights that no

improvement is possible, i.e., that DTPR-min and DTPR-max maintain the optimal competitive ratios

possible for any deterministic online algorithm for OPR.

Theorem 8. Let 𝑘 ≥ 1, \ ≥ 1, and 𝛽 ∈ (0, 𝑈 −𝐿
2

). Then 𝛼 given by Equation (9) is the best competitive
ratio that a deterministic online algorithm for OPR-min can achieve.

Theorem 9. Let 𝑘 ≥ 1, \ ≥ 1, and 𝛽 ∈ (0, 𝑘𝐿
2
). Then𝜔 given by Equation (10) is the best competitive

ratio that a deterministic online algorithm for OPR-max can achieve.

By combining Theorems 4 and 5 with Theorems 8 and 9, these results imply that the competitive

ratios of DTPR-min and DTPR-max are optimal for OPR-min and OPR-max.
Finally, it is interesting to contrast the upper and lower bounds for OPR with those for 𝑘-search,

since the contrast highlights the impact of switching costs. In OPR-min, when 𝛽 > 0, we find that

the DTPR-min competitive results improve on optimal results for 𝑘-min search (where 𝛽 = 0 is

assumed), particularly in the case where 𝐿 approaches 0 (i.e., \ → ∞). Since Theorem 8 implies that

DTPR-min is optimal, this shows that the addition of switching cost in OPR-min enables an online

algorithm to achieve a better competitive ratio compared to 𝑘-min search, which is a surprising

result. In contrast, for OPR-max with 𝛽 > 0, DTPR-max’s competitive bounds are worse than existing

results for 𝑘-max search, particularly for large 𝛽 . Since Theorem 9 implies that DTPR-max is optimal,

this suggests that OPR-max is fundamentally a more difficult problem compared to 𝑘-max search.

We note that although the lower bounds shown in Theorems 8 and 9 specifically apply to

deterministic algorithms, there are lower bounds in the literature for randomized 𝑘-search [29].

The randomized bound for 𝑘-min search are not an order-improvement over the deterministic

lower bound, while the randomized results for 𝑘-max search improve the lower bound to Ω(ln\ ).
However, in the regimes of 𝑘 which are interesting for applications (where 𝑘 is sufficiently large),

there will be a small difference between the deterministic upper bound and the randomized lower

bound in practice. Combined, these results for 𝑘-search suggest that randomization similarly may

2
To see this, note that by eliminating all 𝛽 terms from Equations (9) and (10), we exactly recover Equations (3) and (4),

which are the definitions of the 𝑘-search algorithms. When \ → ∞ as 𝐿 → 0, DTPR-min and DTPR-maxmatch each 𝑘-search

result exactly when 𝛽 = 0. In Corollaries 6(b) and 7(b), DTPR-min and DTPR-max also match each 𝑘 search result exactly

when 𝑘 → ∞ and 𝛽 = 0. (See Sec. 2.2)
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not yield large improvements in the OPR setting. Exploring this dynamic further for OPR is an

interesting direction for future work.

5 PROOFS
We now prove the results described in the previous section. In Section 5.1, we prove the DTPR-min
results presented in Theorem 4 and Corollary 6. In Section 5.2, we provide a proof sketch for

the lower bound results in Theorems 8 and 9, and defer the formal proofs to Appendix D. The

competitive results for DTPR-max in Theorem 5 and Corollary 7 are deferred to Appendix B.

5.1 Competitive Results for DTPR-min
We begin by proving Theorem 4 and Corollary 6. The key novelty in the proof of the main

competitive results (Theorems 4 and 5) lies in our effort to derive two threshold functions and

balance the competitive ratio in several worst-case instances with respect to these thresholds, as

outlined in Section 3.

Proof of Theorem 4. For 0 ≤ 𝑗 ≤ 𝑘 , let S𝑗 ⊆ S be the sets of OPR-min price sequences for

which DTPR-min accepts exactly 𝑗 prices (excluding the 𝑘 − 𝑗 prices it is forced to accept at the

end of the sequence). Then, all of the possible price sequences for OPR-min are represented by

S =
⋃𝑘

𝑗=0
S𝑗 . Also, recall that by definition, ℓ𝑘+1 = 𝐿. Let 𝜖 > 0 be a fixed constant, and define the

following two price sequences 𝜎 𝑗 and 𝜌 𝑗 :

∀𝑗 ∈ [2, 𝑘] : 𝜎 𝑗 = ℓ1, 𝑢2, . . . , 𝑢 𝑗 ,𝑈 , ℓ𝑗+1 + 𝜖, . . . , ℓ𝑗+1 + 𝜖︸                   ︷︷                   ︸
𝑘

,𝑈 ,𝑈 , . . . ,𝑈︸       ︷︷       ︸
𝑘

.

∀𝑗 ∈ [2, 𝑘] : 𝜌 𝑗 = ℓ1,𝑈 , ℓ2,𝑈 , . . . ,𝑈 , ℓ𝑗 ,𝑈 , ℓ𝑗+1 + 𝜖, . . . , ℓ𝑗+1 + 𝜖︸                   ︷︷                   ︸
𝑘

,𝑈 ,𝑈 , . . . ,𝑈︸       ︷︷       ︸
𝑘

.

There are two special cases for 𝑗 = 0 and 𝑗 = 1. For 𝑗 = 0, we have that 𝜎0 = 𝜌0, and this sequence

simply consists of ℓ1 + 𝜖 repeated 𝑘 times, followed by𝑈 repeated 𝑘 times. For 𝑗 = 1, we also have

that 𝜎1 = 𝜌1, and this sequence consists of one price with value ℓ1 and one price with value 𝑈 ,

followed by ℓ2 + 𝜖 repeated 𝑘 times and𝑈 repeated 𝑘 times.

Observe that as 𝜖 → 0, 𝜎 𝑗 and 𝜌 𝑗 are sequences yielding the worst-case ratios in S𝑗 , as DTPR-min
is forced to accept (𝑘 − 𝑗) worst-case𝑈 values at the end of the sequence, and each accepted value

is exactly equal to the corresponding threshold.

Note that 𝜎 𝑗 and 𝜌 𝑗 also represent two extreme possibilities for the additive switching cost. In 𝜎 𝑗 ,

DTPR-min only switches twice, but it mostly accepts values 𝑢𝑖 . In 𝜌 𝑗 , DTPR-min must switch 𝑗 + 1

times because there are many intermediate𝑈 values, but it only accepts values ℓ𝑖 .

In the worst case, we have

DTPR-min(𝜎 𝑗 )
OPT(𝜎 𝑗 )

=
DTPR-min(𝜌 𝑗 )

OPT(𝜌 𝑗 )
.

Also, the optimal solutions for both sequences are lower bounded by the same quantity:

𝑘𝑐min (𝜎 𝑗 ) + 2𝛽 = 𝑘𝑐min (𝜌 𝑗 ) + 2𝛽 . For any sequence 𝑠 in S𝑗 , we have that 𝑐min (𝑠) > ℓ𝑗+1, so

OPT(𝜌 𝑗 ) = OPT(𝜎 𝑗 ) ≤ 𝑘ℓ𝑗+1 + 2𝛽 .

By definition of the threshold families {ℓ𝑖 }𝑖∈[1,𝑘 ] and {𝑢𝑖 }𝑖∈[1,𝑘 ] , we know that∑𝑗

𝑖=1
ℓ𝑖 + 𝑗2𝛽 =

∑𝑗

𝑖=1
𝑢𝑖 for any value 𝑗 ≥ 2:

DTPR-min(𝜌 𝑗 ) =
(

𝑗∑︁
𝑖=1

ℓ𝑖 + (𝑘 − 𝑗)𝑈 + ( 𝑗 + 1)2𝛽
)
=

(
ℓ1 +

𝑗∑︁
𝑖=2

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 4𝛽

)
= DTPR-min(𝜎 𝑗 ).
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Note that whenever 𝑗 < 2, we have that 𝜎0 = 𝜌0, and 𝜎1 = 𝜌1. Thus, DTPR-min(𝜌 𝑗 ) = DTPR-min(𝜎 𝑗 )
holds for any value of 𝑗 . By definition of ℓ1, we simplify ℓ1 +

∑𝑗

𝑖=2
𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 4𝛽 to∑𝑗

𝑖=1
𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽 . Then, for any sequence 𝑠 ∈ S𝑗 , we have the following:

DTPR-min(𝑠)
OPT(𝑠) ≤

DTPR-min(𝜎 𝑗 )
OPT(𝜎 𝑗 )

=
DTPR-min(𝜌 𝑗 )

OPT(𝜌 𝑗 )
≤

∑𝑗

𝑖=1
𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽

𝑘ℓ𝑗+1 + 2𝛽
. (11)

Before proceeding to the next step, we use an intermediate result stated in the following lemma

with a proof given in Appendix C.

Lemma 10. For any 0 ≤ 𝑗 ≤ 𝑘 , by definition of {ℓ𝑖 }𝑖∈[1,𝑘 ] and {𝑢𝑖 }𝑖∈[1,𝑘 ] ,
𝑗∑︁

𝑖=1

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽 ≤ 𝛼 · (𝑘ℓ𝑗+1 + 2𝛽).

For 𝜖 → 0, the competitive ratio DTPR-min/OPT is exactly 𝛼 :

∀0 ≤ 𝑗 ≤ 𝑘 :

DTPR-min(𝜎 𝑗 )
OPT(𝜎 𝑗 )

=

∑𝑗

𝑖=1
𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽

𝑘ℓ𝑗+1 + 2𝛽
= 𝛼,

and thus for any sequence 𝑠 ∈ S,

∀𝑠 ∈ S :

DTPR-min(𝑠)
𝑘𝑐min (𝑠) + 2𝛽

≤ 𝛼.

Since OPT(𝑠) ≥ 𝑘𝑐min (𝑠) + 2𝛽 for any sequence 𝑠 , this implies that DTPR-min is 𝛼-competitive. □

Proof of Corollary 6. To show part (a) for REGIME-1, with fixed 𝑘 ≥ 1, observe that we can

expand the right-hand side of Equation (9) using the binomial theorem to obtain the following:

𝑈 − 𝐿 − 2𝛽

𝑈
(
1 − 1

𝛼

)
− 2𝛽

(
1 − 1

𝑘
+ 1

𝑘𝛼

) = 1 + 1

𝛼
+ Θ

(
𝛼−2

)
.

Next, observe that 𝛼★ solving the following expression satisfies 𝛼★ ≥ 𝛼 ∀𝑘 : 𝑘 ≥ 1, (i.e. 𝛼★ is an

upper bound of 𝛼):
𝑈 − 𝐿 − 2𝛽

𝑈
(
1 − 1

𝛼★

)
− 2𝛽

(
1 − 1

𝑘
+ 1

𝑘𝛼★

) = 1 + 1

𝛼★
.

By solving the above for 𝛼★, we obtain

𝛼 ∼ 𝛼★ =
𝑘𝛽

𝑘𝐿 + 2𝛽
+

√︄
𝑘2𝐿𝑈 + 2𝑘𝐿𝛽 + 2𝑘𝑈 𝛽 + 4𝛽2 + 𝑘2𝛽2

𝑘2𝐿2 + 4𝑘𝐿𝛽 + 4𝛽2
.

Last, note that as 𝐿 → 0, we obtain the following result: 𝛼 ∼ 𝑘
2
+

√︃
𝑘𝑈
2𝛽

+ 1 + 𝑘2

4
≈ 𝑂 (𝑘).

To show part (b) for REGIME-2, we first observe that the right-hand side of Equation 9 can be

approximated as

(
1 + 1

𝑘𝛼

)𝑘 ≈ 𝑒1/𝛼
when 𝑘 → ∞. Then by taking limits on both sides, we obtain

the following:

𝑈 − 𝐿 − 2𝛽

𝑈
(
1 − 1

𝛼

)
− 2𝛽 (1)

= 𝑒1/𝛼 .
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For simplification purposes, let 𝛽 = 𝑐𝑈 /2, where 𝑐 is a small constant on the interval

(
0, 𝑈 −𝐿

𝑈

)
.

We then obtain the following:

𝑈 − 𝐿 − 𝑐𝑈

𝑈
(
1 − 1

𝛼

)
− 𝑐𝑈

= 𝑒1/𝛼 =⇒ 𝐿/𝑈 + 𝑐 − 1 =

(
1

𝛼
+ 𝑐 − 1

)
𝑒1/𝛼 .

By definition of Lambert𝑊 function, solving this equation for 𝛼 obtains the result in Corollary 6(b).

□

5.2 Lower Bound Analysis: Proof of Theorem 8 (OPR-min Lower Bound)
In Theorems 8 and 9, we state that any deterministic strategy achieves a competitive ratio of at

least 𝛼 for OPR-min, and at least 𝜔 for OPR-max. In this section, we formalize the lower bound

construction which proves Theorem 8. A similar construction is used to prove Theorem 9 in

Appendix D.1. These two results jointly imply that our proposed DTPR algorithms are both optimal.

Proof of Theorem 8. Let ALG be a deterministic online algorithm for OPR-min, and suppose

that the adversary uses the price sequence ℓ1, . . . , ℓ𝑘 , which is exactly the sequence defined by (5).

ℓ1 is presented to ALG, at most 𝑘 times or until ALG accepts it. If ALG never accepts ℓ1, the remainder

of the sequence is all𝑈 , and ALG achieves a competitive ratio of
𝑘𝑈 +2𝛽

𝑘ℓ1+2𝛽
= 𝛼 , as defined in (7).

If ALG accepts ℓ1, the next price presented is𝑈 , repeated at most 𝑘 times or until ALG switches to
reject𝑈 . After ALG has switched, ℓ2 is presented to ALG, at most 𝑘 times or until ALG accepts it. Again,
if ALG never accepts ℓ2, the remainder of the sequence is all𝑈 , and ALG achieves a competitive ratio

of at least
ℓ1+(𝑘−1)𝑈 +4𝛽

𝑘ℓ2+2𝛽
= 𝛼 , as defined in (7).

As the sequence continues, whenever ALG does not accept some ℓ𝑖 after it is presented 𝑘 times,

the adversary increases the price to 𝑈 for the remainder of the sequence. Otherwise, if ALG accepts

𝑘 prices before the end of the sequence, the adversary concludes by presenting 𝐿 at least 𝑘 times.

Observe that any ALGwhich does not immediately reject the first𝑈 presented to it after accepting

some ℓ𝑖 obtains a competitive ratio strictly worse than 𝛼 . To illustrate this, suppose ALG has just
accepted ℓ1, incurring a cost of ℓ1 + 𝛽 so far. The adversary begins to present 𝑈 , and ALG accepts
𝑦 ≤ (𝑘 − 1) of these 𝑈 prices before switching away. If 𝑦 = (𝑘 − 1), ALG will accept 𝑘 prices

before the end of the sequence and achieve a competitive ratio of
ℓ1+(𝑘−1)𝑈 +2𝛽

𝑘𝐿+2𝛽
> 𝛼 . Otherwise, if

𝑦 < (𝑘 − 1), the cost incurred by ALG so far is at least ℓ1 + 2𝛽 + 𝑦𝑈 , while the cost incurred by ALG
if it had immediately switched away (𝑦 = 0) would be ℓ1 + 2𝛽 – since any price which might be

accepted by ALG in the future should be ≤ 𝑈 , the latter case strictly improves the competitive ratio

of ALG.
Assuming that ALG does immediately reject any 𝑈 presented to it, and that ALG accepts

some prices before the end of the sequence, the competitive ratio attained by ALG is at least∑𝑗

𝑖=1
ℓ𝑖+( 𝑗+1)2𝛽+(𝑘− 𝑗 )𝑈

𝑘ℓ𝑗+1+2𝛽
= 𝛼 , as defined in (7).

Similarly, if ALG accepts 𝑘 prices before the end of the sequence, the competitive ratio attained

by ALG is at least

∑𝑘
𝑖=1

ℓ𝑖+𝑘2𝛽

𝑘𝐿+2𝛽
= 𝛼 , as defined in (7).

Since any arbitrary deterministic online algorithm ALG cannot achieve a competitive ratio better

than 𝛼 playing against this adaptive adversary, our proposed algorithm DTPR-min is optimal. □

6 CASE STUDY: CARBON-AWARE TEMPORALWORKLOAD SHIFTING
We now present experimental results for the DTPR algorithms in the context of the carbon-aware

temporal workload shifting problem. We evaluate DTPR-min (and DTPR-max in Appendix A) as

compared to existing algorithms from the literature that have been adapted for OPR.
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Table 2. Summary of carbon trace data sets

Location Pacific NW, U.S. New Zealand Ontario, Canada
Number of Data Points 10,144 1,324 17,898

Max. Carbon Intensity (𝑈 ) 648 gCO2eq/kWh 165 gCO2eq/kWh 181 gCO2eq/kWh

Min. Carbon Intensity (𝐿) 18 gCO2eq/kWh 54 gCO2eq/kWh 15 gCO2eq/kWh

Duration (mm/dd/yy) 04/20/22 - 12/06/22 10/19/21 - 11/16/21 10/19/21 - 12/06/22

6.1 Experimental Setup
We consider a carbon-aware load shifting system that operates on a hypothetical data center. An

algorithm is given a deferrable and interruptible job that takes 𝑘 time slots to complete, along with

a deadline𝑇 ≥ 𝑘 , such that the job must be completed at most𝑇 slots after its arrival. The objective

is to selectively run units of the job such that the total carbon emissions are minimized while still

completing the job before its deadline.

For the minimization variant (OPR-min) of the experiments, we consider carbon emissions inten-
sities, as the price values. At each time step 𝑡 , the electricity supply has a carbon intensity 𝑐𝑡 , i.e., if

the job is being processed during the time step 𝑡 (𝑥𝑡 = 1), the data center’s carbon emissions during

that time step are proportional to 𝑐𝑡 . If the job is not being processed during the time step 𝑡 (𝑥𝑡 = 0),

we assume for simplicity that carbon emissions in the idle state are negligible and essentially 0. To

model the combined computational overhead of interrupting, checkpointing, and restarting the

job, the algorithm incurs a fixed switching cost of 𝛽 whenever 𝑥𝑡−1 ≠ 𝑥𝑡 , whose values are selected

relative to the price values.

Carbon data traces. We use real-world carbon traces from Electricity Maps [32], which provide

time-series information about the average carbon emissions intensity of the electric grid. We use

traces from three different regions: the Pacific Northwest of the U.S., New Zealand, and Ontario,

Canada. The data is provided at an hourly granularity and includes the current average carbon

emissions intensity in grams of CO2 equivalent per kilowatt-hour (gCO2eq/kWh), and the percent-

age of electricity being supplied from carbon-free sources. In Figure 9 (in Appendix A), we plot

three representative actual traces for carbon intensity over time for a 96-hour period in each region.

Parameter settings. We test for time horizons (𝑇 ) of 48 hours, 72 hours, and 96 hours. The chosen

time horizon represents the time at which the job with length 𝑘 must be completed. As is given in

the carbon trace data, we consider time slots of one hour.

The online algorithms we use in experiments take 𝐿 and 𝑈 as parameters for their threshold

functions. To set these parameters, we examine the entire carbon trace for the current location. For

the Pacific NW trace and the Ontario trace, these values represent lower and upper bounds of the

carbon intensity values for a full year. For the New Zealand trace, these values are a lower and

upper bound for the values during a month of data, which is reflected by a smaller fluctuation ratio.

We set 𝐿 and𝑈 to be the minimum and maximum observed carbon intensity over the entire trace.

To generate each input sequence, a contiguous segment of size 𝑇 is randomly sampled from the

given carbon trace. In a few experiments, we simulate greater volatility over time by “scaling up”

each price’s deviation from the mean. First, we compute the average value over the entire sequence.

Next, we compute the difference between each price and this average. Each of these differences is

scaled by a noise factor of𝑚 ≥ 1. Finally, new carbon values are computed by summing each scaled

difference with the average. If𝑚 = 1, we recover the same sequence, and if𝑚 > 1, any deviation

from the mean is proportionately amplified. Any values which become negative after applying this

transformation are truncated to 0. This technique allows us to evaluate algorithms under different

levels of volatility. As we are in the regime where 𝐿 = 0, none of the other online algorithms

considered have competitive guarantees, since their competitive ratios become unbounded when
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Table 3. Summary of algorithms tested in our experiments

Algorithm Carbon-aware Switching-aware Description

OPT (offline) YES YES Optimal offline solution

Carbon-Agnostic NO YES Runs job in the first 𝑘 time slots

Const. Threshold YES NO Runs job if carbon meets threshold

√
𝑈𝐿 [15]

𝑘-search YES NO Runs 𝑖th slot of job if carbon meets threshold Φ𝑖 [29]

DTPR YES YES This work (algorithms proposed in Section 3)

𝐿 → 0. Instead, our DTPR algorithm maintains its optimal bound defined in (9) and (10) due to the

presence of switching cost 𝛽 in the competitive bounds. Performance in the presence of greater

carbon volatility is important, as on-site renewable generation is seeing greater adoption as a

supplementary power source for data centers [1, 36].

Benchmark algorithms. To evaluate the performance of DTPR, we use a dynamic programming

approach to calculate the offline optimal solution for each given sequence and objective, which

allows us to report the empirical competitive ratio for each tested algorithm. We compare DTPR
against two categories of benchmark algorithms, which are summarized in Table 3.

The first category of benchmark algorithms is carbon-agnostic algorithms, which run the jobs

during the first 𝑘 time slots in order, i.e., accepting prices 𝑐1, . . . , 𝑐𝑘 . This approach incurs the

minimal switching cost of 2𝛽 , because it does not interrupt the job while it is being processed. The

carbon-agnostic approach simulates the behavior of a scheduler that runs the job to completion as

soon as it is submitted, without any focus on reducing carbon emissions. Note that the performance

of this approach significantly varies based on the randomly selected sequence, since it will perform

well if low-carbon electricity is available in the first few slots, and will perform poorly if the first

few slots are high-carbon.

We also compare DTPR against switching-cost-agnostic algorithms, which only consider carbon

cost. We have two algorithms of this type, each drawing from existing online search methods in

the literature. Although they do not consider the switching cost in their design, they still incur a

switching cost whenever their decision in adjacent time slots differs.

The first such algorithm is a constant threshold algorithm, which uses the

√
𝑈𝐿 threshold value

first presented for online search in [15]. In our minimization experiments, this algorithm runs the

workload during the first 𝑘 time slots where the carbon intensity is at most

√
𝑈𝐿.

The other switching-cost-agnostic algorithm tested is the 𝑘-search algorithm shown by [29] and

described in Section 2.2. The 𝑘-min search algorithm chooses to run the 𝑖th hour of the job during

the first time slot where the carbon intensity is at most Φ𝑖 .

6.2 Experimental Results
We now present our experimental results. Our focus is on the empirical competitive ratio (a lower

competitive ratio is better). We report the performance of all algorithms for each experimental

setting, in each tested region. Throughout the minimization experiments, we observe that DTPR-min
outperforms the benchmark algorithms. The 95th percentile worst-case empirical competitive ratio

achieved by DTPR-min is a 48.2% improvement on the carbon-agnostic method, a 15.6% improvement

on the 𝑘-min search algorithm, and a 14.4% improvement on the constant threshold algorithm.

In Figure 5, we show results for three different values of horizon𝑇 in each carbon trace, with fixed

𝛽 ≈ 𝑈 /20, fixed 𝑘 = ⌈𝑇 /6⌉, and no added volatility. Although our experiments test three distinct

values for 𝑇 , we later observe that the ratio between 𝑘 and 𝑇 is the primary factor that changes the

performance of the algorithms we test; in this figure, DTPR and the benchmark algorithms compare
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(a) Ontario, Canada (b) U.S. Pacific Northwest (c) New Zealand
Fig. 5. Experiments for three distinct time horizons, where 𝑇 ∈ {48, 72, 96}.
(a): Ontario, Canada carbon trace, with \ = 12.06̄ (b): U.S. Pacific Northwest carbon trace, with \ = 36

(c): New Zealand carbon trace, with \ = 3.05̄
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Fig. 6. Experiments on Ontario, Canada carbon trace, with \ = 12.06̄, and 𝑇 = 48.
(a): Changing job length 𝑘 w.r.t. time horizon 𝑇 (𝑥-axis), vs. competitive ratio (b): Changing switching cost 𝛽
w.r.t.𝑈 (𝑥-axis), vs. competitive ratio (c): Different volatility levels w.r.t.𝑈 (𝑥-axis), vs. competitive ratio
(d): Cumulative distribution function of competitive ratios

very similarly on the same carbon trace for different 𝑇 values. As such, we set 𝑇 = 48 in the rest of

the experiments in this section for brevity. This represents a time horizon of 48 hours.

In the first experiment, we test all algorithms for different job lengths 𝑘 in the range from 4 hours

to𝑇 /2 (24 hours). The switching cost 𝛽 is non-zero and fixed to ≈ 𝑈 /20, and no volatility is added to

the carbon trace. By testing different values for 𝑘 , this experiment tests different ratios between the

workload length and the horizon provided to the algorithm. In Figures 6(a), 7(a), and 8(a), we show

that the competitive ratio of DTPR-min outperforms others, and it compares particularly favorably

for short job lengths. Averaging over all regions and job lengths, the competitive ratio achieved by

DTPR-min is a 11.4% improvement on the carbon-agnostic method, a 14.0% improvement on the

𝑘-min search algorithm, and a 5.5% improvement on the constant threshold algorithm.

In the second experiment, we test all algorithms for different switching costs 𝛽 in the range

from 0 to 𝑈 /5. The job length 𝑘 is set to 10 hours, and no volatility is added to the carbon trace.

By testing different values for 𝛽 , this experiment tests how an increasing switching cost impacts

the performance of DTPR-min with respect to other algorithms which do not explicitly consider

the switching cost. In Figures 6(b), 7(b), and 8(b), we show that the observed competitive ratio of

DTPR-min outperforms the benchmark algorithms for most values of 𝛽 in all regions. Unsurprisingly,

the carbon-agnostic technique (which incurs minimal switching cost) performs better as 𝛽 grows.

While the constant threshold algorithm has relatively consistent performance, the 𝑘-min search

algorithm performs noticeably worse as 𝛽 grows. Averaging over all regions and switching cost

values, the competitive ratio achieved by DTPR-min is a 18.2% improvement on the carbon-agnostic

method, a 8.9% improvement on the 𝑘-min search algorithm, and a 4.1% improvement on the

constant threshold algorithm.
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Fig. 7. Experiments on U.S. Pacific Northwest carbon trace, with \ = 36, and 𝑇 = 48.
(a): Changing job length 𝑘 w.r.t. time horizon 𝑇 (𝑥-axis), vs. competitive ratio (b): Changing switching cost 𝛽
w.r.t.𝑈 (𝑥-axis), vs. competitive ratio (c): Different volatility levels w.r.t.𝑈 (𝑥-axis), vs. competitive ratio
(d): Cumulative distribution function of competitive ratios

(a) Changing 𝑘 (b) Changing 𝛽 (c) Changing volatility (d) CDF

Fig. 8. Experiments on New Zealand carbon trace, with \ = 3.05̄, and 𝑇 = 48.
Note: the line for Carbon-Agnostic overlaps the line for Constant Threshold in some of the above plots.
(a): Changing job length 𝑘 w.r.t. time horizon 𝑇 (𝑥-axis), vs. competitive ratio (b): Changing switching cost 𝛽
w.r.t.𝑈 (𝑥-axis), vs. competitive ratio (c): Different volatility levels w.r.t.𝑈 (𝑥-axis), vs. competitive ratio
(d): Cumulative distribution function of competitive ratios

In the final experiment, we test all algorithms on sequences with different volatility. The job

length 𝑘 and switching cost 𝛽 are both fixed as previously. We add volatility by setting a noise factor
from the range 1.0 to 3.0. By testing different values for this volatility, this experiment tests how

each algorithm handles larger fluctuations in the carbon intensity of consecutive time steps. In

Figures 6(c), 7(c), and 8(c), we show that the observed competitive ratio of DTPR-min outperforms

the benchmark algorithms for all noise factors in all regions. Intuitively, higher volatility values

cause the online algorithms to perform worse in general. Averaging over all regions and noise

factors, the competitive ratio achieved by DTPR-min is a 53.6% improvement on the carbon-agnostic

method, a 13.5% improvement on the 𝑘-min search algorithm, and a 14.3% improvement on the

constant threshold algorithm.

By averaging over all experiments for a given region, we obtain the cumulative distribution

function plot for each algorithm’s competitive ratio in Figures 6(d), 7(d), and 8(d). Compared to

the carbon-agnostic, constant threshold, and 𝑘-min search algorithms, DTPR-min achieves a lower

average empirical competitive ratio distribution for all tested regions. Across all regions at the 95th
percentile, DTPR-min achieves a worst-case empirical competitive ratio of 1.40. This represents a

48.2% improvement over the carbon-agnostic algorithm, and improvements of 15.6% and 14.4% over

the 𝑘-min search and constant threshold switching-cost-agnostic algorithms, respectively.

7 RELATEDWORK
This paper contributes directly to three lines of work: (i) work on online search and related problems,

e.g., 𝑘-search, one-way trading, and online knapsack; (ii) work on online optimization problems
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with switching costs, e.g., metrical task systems and convex function chasing; and (iii) work on

carbon-aware load shifting. We describe the relationship to each below.

Online Search. The OPR problem is related to the online 𝑘-search problem [23, 29], as discussed in

the introduction and Section 2.2. It also has several similar counterparts, including online conversion

problems such as one-way trading [14, 15, 34, 44] and online knapsack problems [45, 50, 54], with

practical applications to stock trading [29], cloud pricing [53], electric vehicle charging [46], etc. The

𝑘-search problem can be viewed as an integral version of the online conversion problem, while the

general online conversion problem allows continuous one-way trading. The basic online knapsack

problem studies how to pack arriving items of different sizes and values into a knapsack with limited

capacity, while its extensions to item departures [45, 53] and multidimensional capacity [50] have

also been studied recently. Another line of research leverages ML predictions to design learning-

augmented online algorithms for online 𝑘-search [23] and online conversion [45]. However, to the

best of our knowledge, none of these works consider the switching cost of changing decisions.

Metrical Task Systems. The metrical task systems (MTS) problem was introduced by Borodin

et al. in [7]. Several decades of progress on upper and lower bounds on the competitive ratio of

MTS recently culminated with a tight bound of Θ(log
2 𝑛) for the competitive ratio of MTS on an

arbitrary 𝑛-point metric space, with Θ(log𝑛) being possible on certain metric spaces such as trees

[8, 9]. Several modified forms of MTS have also seen significant attention in the literature, such

as smoothed online convex optimization (SOCO) and convex function chasing (CFC), in which the

decision space is an 𝑛-dimensional normed vector space and cost functions are restricted to be

convex [17, 25]. The best known upper and lower bounds on the competitive ratio of CFC are

𝑂 (𝑛) and Ω(
√
𝑛), respectively, in 𝑛-dimensional Euclidean spaces [10, 39]. However, algorithms

with competitive ratios independent of dimension can be obtained for certain special classes of

functions, such as 𝛼-polyhedral functions [11]. Several recent works have also investigated the

design of learning-augmented algorithms for various cases of CFC/SOCO and MTS which exploit the

performance of ML predictions of the optimal decisions [4, 12, 13, 24, 38]. The key characteristic

distinguishing OPR from MTS is the presence of a deadline constraint. None of the algorithms for

MTS-like problems are designed to handle long-term constraints while being competitive.

Carbon-Aware Temporal Workload Shifting. The goal of shifting workloads in time to allow more

sustainable operations of data centers has been of interest for more than a decade, e.g., [19, 26–

28]. Traditionally, such papers have used models that build on one of convex function chasing,

𝑘-search, or online knapsack to design algorithms; however such models do not capture both the

switching costs and long-term deadlines that are crucial to practical deployment. In recent years,

the load shifting literature has focused specifically on reducing the carbon footprint of operations,

e.g., [1, 6, 36, 47]. Perhaps most related to this paper is [47], which explores the problem of carbon-

aware temporal workload shifting and proposes a threshold-based algorithm that suspends the job

when the carbon intensity is higher than a threshold value and resumes it when it drops below the

threshold. However, it does not consider switching nor does it provide any deadline guarantees.

Other recent work on carbon-aware temporal shifting seeks to address the resultant increase in

job completion times. In [42], authors leverage the pause and resume approach to reduce the

carbon footprint of ML training and high-performance computing applications such as BLAST [16].

However, instead of resuming at normal speed (1×) during the low carbon intensity periods, their

applications resume operation at a faster speed (𝑚×), where the scale factor𝑚 depends on the

application characteristics. It uses a threshold-based approach to determine the low carbon intensity

periods but does not consider switching costs or provide any deadline guarantees. A future direction

is to extend the DTPR algorithms to consider the ability to scale up speed after resuming jobs.
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In addition to our direct contributions in the above fields, our work is adjacent to several existing

studies which have considered switching costs and hysteretic control in queueing models for single

servers, server farms, and clouds. In [22], anM/M/1 queueing system is presented where the decision

maker chooses arrival and service rates at each epoch and incurs a switching cost to change the rates.

In this regime, they show that the optimal policy is a hysteretic policy, which exhibits resistance to

change due to the switching cost. Gandhi et al. [18] present an M/M/k queueing system for server

farms with setup costs, where turning a server on incurs a time delay. Similarly, [33] presents and

analyzes a nearly-optimal mechanism to control the performance and power consumption of a

server farm, where the setup cost incurs time and energy. A few works have also considered similar

problems with different assumptions, such as job arrivals distributed according to a stochastic

fluid model [5], and modeling the control policy as a Markov decision process [51]. It is notable

that nearly all of these works derive hysteretic control policies based on the queue length, which

essentially use a double threshold technique to resist changing decisions as a function of switching

cost, a similar flavor of the result as we present in our setting. However, OPR is foundationally

different as compared to the above works since we consider a single workload, a single deadline,

and costs are exogenous to the online decision; this results in an algorithm design and analysis

technique that differ substantially from these queueing models.

8 CONCLUDING REMARKS
Motivated by carbon-aware load shifting, we introduce and study the online pause and resume

problem (OPR), which bridges gaps between several online optimization problems. To our knowledge,

it is the first online optimization problem that includes both long-term constraints and switching

costs. Our main results provide optimal online algorithms for the minimization and maximization

variants of this problem, as well as lower bounds for the competitive ratio of any deterministic

online algorithm. Notably, our proposed algorithms match existing optimal results for the related

𝑘-search problem when the switching cost is 0, and improve on the 𝑘-min search competitive

bounds for non-zero switching cost. The key to our results is a novel double threshold algorithm

that we expect to be applicable in other online problems with switching costs.

There are a number of interesting directions in which to continue the study of OPR. We have

highlighted the application of OPR to carbon-aware load shifting, but OPR also applies to many

other problems where pricing changes over time and frequent switching is undesirable. Pursuing

these applications is important. Theoretically, there are several interesting open questions. First,

considering the target application of carbon-aware load shifting, some workloads are highly paral-
lelizable [42], which adds another dimension of scaling to the problem (i.e., instead of choosing to

run 1 unit of the job in each time slot, the online player must decide how many units to allocate at

each time slot). Furthermore, considering heterogeneous switching costs would be a logical extension
of the setting we have considered here, modeling, for example, switching models which act as a

function of the time spent in the current state. Both of these make the theoretical problem more

challenging, and are important considerations for future work. Additionally, very recent work has

incorporated machine-learned advice to achieve better performance on related online problems,

including 𝑘-search [23, 44], CFC/SOCO [12, 24], and MTS [4, 13, 38]. Designing learning-augmented

algorithms for OPR is a very promising line of future work, particularly considering applications

such as carbon-aware load shifting, where accurate predictions can significantly improve the

algorithm’s understanding of the future in the best case, without sacrificing worst-case guarantees.
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Fig. 9. Carbon intensity (in gCO2eq/kWh) values plotted for each region tested in our numerical experiments,
with one-hour granularity.We plot a representative random interval of 96 hours, with vertical lines demarcating
the different values for𝑇 (time horizon) tested in our experiments. In all regions, carbon values roughly follow
a diurnal (daily cycle) pattern. Actual values and observed intensities significantly vary in different regions.

A CASE STUDY RESULTS FOR DTPR-MAX ALGORITHM

Algorithm 2 Double Threshold Pause and Resume for OPR-max (DTPR-max)

Input: threshold values {𝑢𝑖 }𝑖∈[1,𝑘 ] and {ℓ𝑖 }𝑖∈[1,𝑘 ] defined in Equation (6), deadline 𝑇

Output: online decisions {𝑥𝑡 }𝑡 ∈[1,𝑇 ]
1: initialize: i = 1;

2: while price 𝑐𝑡 arrives and 𝑖 ≤ 𝑘 do
3: if (𝑘 − 𝑖) ≥ (𝑇 − 𝑡) then ⊲ close to the deadline 𝑇, we must accept remaining prices

4: price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1

5: else if 𝑥𝑡−1 = 0 then ⊲ If previous price was not accepted

6: if 𝑐𝑡 ≥ 𝑢𝑖 then price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1

7: else price 𝑐𝑡 is rejected, set 𝑥𝑡 = 0

8: else if 𝑥𝑡−1 = 1 then ⊲ If previous price was accepted

9: if 𝑐𝑡 ≥ ℓ𝑖 then price 𝑐𝑡 is accepted, set 𝑥𝑡 = 1

10: else price 𝑐𝑡 is rejected, set 𝑥𝑡 = 0

11: update 𝑖 = 𝑖 + 𝑥𝑡

This section presents and discusses the deferred experimental results for the DTPR-max algorithm
(pseudocode summarized in Algorithm 2) in the carbon-aware temporal workload shifting case

study. We evaluate DTPR-max against the same benchmark algorithms described in Section 6.1.

For the maximization metric, we consider the percentage of carbon-free electricity powering the

grid. At each time step 𝑡 , the electricity supply has a carbon-free percentage 𝑐𝑡 , i.e., if the job

is being processed during time slot 𝑡 (𝑥𝑡 = 1), the electricity powering the data center’s is 𝑐𝑡%
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Fig. 10. Maximization experiments on Ontario, Canada carbon trace, with \ ≈ 1.51 and 𝑇 = 48.
(a): Changing job length 𝑘 w.r.t. time horizon 𝑇 (𝑥-axis), vs. competitive ratio (b): Changing switching cost 𝛽
w.r.t. 𝑈 (𝑥-axis), vs. competitive ratio (c): Different volatility levels w.r.t.𝑈 (𝑥-axis), vs. competitive ratio (d):
Cumulative distribution function of competitive ratios

carbon-free, and the objective is to maximize this percentage over all 𝑘 slots of the active running

of the workload.

In these maximization experiments, the switching-cost-agnostic 𝑘-max-search algorithm chooses

to run the 𝑖th hour of the job during the first time slot where the carbon-free supply is at least Φ𝑖 .

Similarly, the constant threshold algorithm chooses to run the job whenever the carbon-free supply

is at least

√
𝑈𝐿. We set 𝐿 and𝑈 to be the minimum and maximum carbon-free supply percentages

over the entire trace being studied.

As in Section 6.2, our focus is on the competitive ratio (lower competitive ratio is better). We

report the performance of all algorithms for each experiment setting, in each tested region.

In the first experiment, we test all algorithms for different job lengths 𝑘 in the range from 4

hours to 𝑇 /2(24). The switching cost 𝛽 is non-zero and fixed, and no volatility is added to the

carbon trace. By testing different values for 𝑘 , this experiment tests different ratios between the

workload length and the slack provided to the algorithm. In Figures 10(a), 11(a), and 12(a), we show

that the observed average competitive ratio of DTPR-max narrowly outperforms the benchmark

algorithms for all values of 𝑘 in all regions, and it compares particularly favorably for short job
lengths. Averaging over all regions and job lengths, the competitive ratio achieved by DTPR-max
is a 4.9% improvement on the carbon-agnostic method, a 8.4% improvement on the 𝑘-max search

algorithm, and a 2.1% improvement on the constant threshold algorithm.

In the second experiment, we test all algorithms for different switching costs 𝛽 in the range

from 0 to 𝑈 /5. The job length 𝑘 is set to 10 hours, and no volatility is added to the carbon trace.

By testing different values for 𝛽 , this experiment tests how an increasing switching cost impacts

the performance of DTPR-max with respect to other algorithms which do not explicitly consider

the switching cost. In Figures 10(b), 11(b), and 12(b), we show that the average competitive ratio

of DTPR-max notably outperforms the other algorithms for a wide range of 𝛽 values in all regions.

Unsurprisingly, the carbon-agnostic technique (which only incurs a switching cost of 2𝛽) is more

competitive as 𝛽 grows. The 𝑘-max search algorithm performs noticeably worse as 𝛽 grows. While

the constant threshold algorithm has relatively consistent performance, the 𝑘-max search algorithm

performs noticeably worse as 𝛽 grows. Averaging over all regions and switching cost values, the

competitive ratio achieved by DTPR-max is a 2.5% improvement on the carbon-agnostic method,

a 6.4% improvement on the 𝑘-max search algorithm, and a 0.1% improvement on the constant

threshold algorithm.

In the final experiment, we test all algorithms on sequences with different volatility. The job

length𝑘 and switching cost 𝛽 are both fixed.We add volatility by setting a noise factor from the range

1.0 to 3.0. By testing different values for this volatility, this experiment tests how each algorithm
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Fig. 11. Maximization experiments on U.S. Pacific Northwest carbon trace, with \ ≈ 5.24 and 𝑇 = 48.
(a): Changing job length 𝑘 w.r.t. time horizon 𝑇 (𝑥-axis), vs. competitive ratio (b): Changing switching cost 𝛽
w.r.t. 𝑈 (𝑥-axis), vs. competitive ratio (c): Different volatility levels w.r.t.𝑈 (𝑥-axis), vs. competitive ratio (d):
Cumulative distribution function of competitive ratios

(a) Changing 𝑘

U/5

(b) Changing 𝛽

1.0 1.5 2.0 2.5
noise factor

1.02

1.04

1.06

1.08

1.10

1.12

em
pi

ric
al

 c
om

pe
tit

iv
e 

ra
tio

(c) Changing volatility

1.00 1.05 1.10 1.15 1.20
empirical competitive ratio

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e 

pr
ob

ab
ilit

y
(d) CDF

Fig. 12. Maximization experiments on New Zealand carbon trace, with \ ≈ 1.35 and 𝑇 = 48.
(a): Changing job length 𝑘 w.r.t. time horizon 𝑇 (𝑥-axis), vs. competitive ratio (b): Changing switching cost 𝛽
w.r.t. 𝑈 (𝑥-axis), vs. competitive ratio (c): Different volatility levels w.r.t.𝑈 (𝑥-axis), vs. competitive ratio (d):
Cumulative distribution function of competitive ratios

handles larger fluctuations in the carbon intensity of consecutive time steps. In Figures 10(c), 11(c),

and 12(c), we show that the observed average competitive ratio of DTPR-max outperforms the other

algorithms for most noise factors in all regions, with a slight degradation in the Pacific Northwest

region. Intuitively, higher volatility values cause the online algorithms to perform worse in general.

Averaging over all regions and noise factors, the competitive ratio achieved by DTPR-max is a 13.0%

improvement on the carbon-agnostic method, a 11.2% improvement on the 𝑘-max search algorithm,

and a 2.1% improvement on the constant threshold algorithm.

By averaging over all experiments for a given region, we obtain the cumulative distribution

function plot for each algorithm’s competitive ratio in Figures 10(d), 11(d), and 12(d). Compared

to the carbon-agnostic, constant threshold, and 𝑘-max search algorithms, DTPR-max generally

exhibits a lower average empirical competitive ratio over the tested regions. Notably, all of the

algorithms are nearly 1-competitive in our experiments. Compared to ourminimization experiments,

DTPR-max outperforms the baseline algorithms by a smaller margin. Across all regions at the 95th
percentile, DTPR-max achieves a worst-case empirical competitive ratio of 1.08. This represents a

16.1% improvement over the carbon-agnostic algorithm, and improvements of 11.4% and 2.19% over

the 𝑘-max search and constant threshold switching-cost-agnostic algorithms, respectively.

We conjecture that one dynamic contributing to this is the relatively low values of \ observed

for the carbon-free supply percentage in these real-world carbon traces.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 3, Article 45. Publication date: December 2023.



The Online Pause and Resume Problem 45:29

B COMPETITIVE ANALYSIS OF DTPR-MAX: PROOF OF THEOREM 5
Here we prove the DTPR-max results presented in Theorem 5 and Corollary 7.

Proof of Theorem 5. For 0 ≤ 𝑗 ≤ 𝑘 , let S𝑗 ⊆ S be the sets of OPR-max price sequences for

which DTPR-max accepts exactly 𝑗 prices (excluding the 𝑘− 𝑗 prices it is forced to accept at the end of

the sequence). Then all of the possible price sequences for OPR-max are represented by S =
⋃𝑘

𝑗=0
S𝑗 .

By definition, 𝑢𝑘+1 = 𝑈 . Let 𝜖 > 0 be fixed, and define the following two price sequences 𝜎 𝑗 and 𝜌 𝑗 :

∀0 ≤ 𝑗 ≤ 𝑘 : 𝜎 𝑗 = 𝑢1, ℓ2, . . . , ℓ𝑗 , 𝐿,𝑢 𝑗+1 − 𝜖, . . . , 𝑢 𝑗+1 − 𝜖︸                     ︷︷                     ︸
𝑘

, 𝐿, 𝐿, . . . , 𝐿︸     ︷︷     ︸
𝑘

.

∀0 ≤ 𝑗 ≤ 𝑘 : 𝜌 𝑗 = 𝑢1, 𝐿,𝑢2, 𝐿, . . . , 𝐿,𝑢 𝑗 , 𝐿,𝑢 𝑗+1 − 𝜖, . . . , 𝑢 𝑗+1 − 𝜖︸                     ︷︷                     ︸
𝑘

, 𝐿, 𝐿, . . . , 𝐿︸     ︷︷     ︸
𝑘

.

We have two special cases for 𝑗 = 0 and 𝑗 = 1. For 𝑗 = 0, we have that 𝜎0 = 𝜌0, and this sequence

simply consists of 𝑢1 − 𝜖 repeated 𝑘 times, followed by 𝐿 repeated 𝑘 times. For 𝑗 = 1, we also have

that 𝜎1 = 𝜌1, and this sequence consists of one price with value 𝑢1 and one price with value 𝐿,

followed by 𝑢2 − 𝜖 repeated 𝑘 times and 𝐿 repeated 𝑘 times.

Observe that as 𝜖 → 0,𝜎 𝑗 and 𝜌 𝑗 are sequences yielding theworst-case ratios inS𝑗 , as DTPR-max is
forced to accept (𝑘 − 𝑗) worst-case 𝐿 values at the end of the sequence, and each accepted value is

exactly equal to the corresponding threshold.

𝜎 𝑗 and 𝜌 𝑗 also represent two extreme possibilities for the switching cost. In 𝜎 𝑗 , DTPR-max only
switches twice, but it mostly accepts values ℓ𝑖 . In 𝜌 𝑗 , DTPR-max must switch 𝑗 + 1 times because

there are many intermediate 𝐿 values, but it only accepts values which are at least 𝑢𝑖 .

Observe that OPT(𝜎 𝑗 )/DTPR-max(𝜎 𝑗 ) = OPT(𝜌 𝑗 )/DTPR-max(𝜌 𝑗 ). First, the optimal solution for

both sequences is exactly the same: 𝑘𝑐max (𝜎 𝑗 ) − 2𝛽 = 𝑘𝑐max (𝜌 𝑗 ) − 2𝛽 .

For any sequence 𝑠 in S𝑗 , we also know that 𝑐max (𝑠) < 𝑢 𝑗+1, so OPT(𝜌 𝑗 ) = OPT(𝜎 𝑗 ) ≤ 𝑘𝑢 𝑗+1 − 2𝛽 .

By definition of the threshold families {𝑢𝑖 }𝑖∈[1,𝑘 ] and {ℓ𝑖 }𝑖∈[1,𝑘 ] , we know that∑𝑗

𝑖=1
𝑢𝑖 − 𝑗2𝛽 =

∑𝑗

𝑖=1
ℓ𝑖 for any value 𝑗 ≥ 2:

DTPR-max(𝜌 𝑗 ) =
(
𝑢1 +

𝑗∑︁
𝑖=2

ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 4𝛽

)
=

(
𝑗∑︁

𝑖=1

𝑢𝑖 + (𝑘 − 𝑗)𝐿 − ( 𝑗 + 1)2𝛽
)
= DTPR-max(𝜎 𝑗 ).

Note that whenever 𝑗 < 2, we have that 𝜎0 = 𝜌0, and 𝜎1 = 𝜌1. Thus, DTPR-min(𝜌 𝑗 ) = DTPR-min(𝜎 𝑗 )
holds for any value of 𝑗 .

By definition of 𝑢1, we simplify 𝑢1 +
∑𝑗

𝑖=2
ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 4𝛽 to

∑𝑗

𝑖=1
ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽 . For any

sequence 𝑠 ∈ S𝑗 , we have the following:

OPT(𝑠)
DTPR-max(𝑠) ≤

OPT(𝜎 𝑗 )
DTPR-max(𝜎 𝑗 )

=
OPT(𝜌 𝑗 )

DTPR-max(𝜌 𝑗 )
≤

𝑘𝑢 𝑗+1 − 2𝛽∑𝑗

𝑖=1
ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽

. (12)

Lemma 11. For any 𝑗 ∈ [0, 𝑘], by definition of {𝑢𝑖 }𝑖∈[1,𝑘 ] and {ℓ𝑖 }𝑖∈[1,𝑘 ] ,

𝜔 ·
(

𝑗∑︁
𝑖=1

ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽

)
≤ 𝑘𝑢 𝑗+1 − 2𝛽. The proof is deferred to Appendix C.

For 𝜖 → 0, the competitive ratio OPT/DTPR-max is exactly 𝜔 :

∀0 ≤ 𝑗 ≤ 𝑘 :

OPT(𝜎 𝑗 )
DTPR-max(𝜎 𝑗 )

=
𝑘𝑢 𝑗+1 − 2𝛽∑𝑗

𝑖=1
ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽

= 𝜔.
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and thus for any sequence 𝑠 ∈ S,

∀𝑠 ∈ S :

𝑘𝑐max (𝑠) − 2𝛽

DTPR-max(𝑠) ≤ 𝜔.

Since OPT(𝑠) ≤ 𝑘𝑐max (𝑠) − 2𝛽 for any sequence 𝑠 , this implies that DTPR-max is 𝜔-competitive. □

Proof of Corollary 7. For simplification purposes, let 𝛽 = 𝑏𝐿/2, where 𝑏 is a real constant on

the interval (0, 𝑘). To show part (a) for REGIME-1, with fixed 𝑘 ≥ 1, observe that for sufficiently

large 𝜔 , we have the following:

\ − 𝑏 − 1 = (𝜔 − 1)
(
1 + 𝜔

𝑘

)𝑘
−

(
𝑏 − 𝑏

𝑘
+ 𝑏𝜔

𝑘

) (
1 + 𝜔

𝑘

)𝑘
≈ (1 + 𝑜 (1))

[
𝜔

(𝜔
𝑘

)𝑘
− 𝑏

(𝜔
𝑘

)𝑘+1

− 𝑏

]
.

Let 𝜔+ =
𝑘+1

√︃
𝑘𝑘 · 𝑘\

𝑘−𝑏 . Then, for sufficiently large 𝜔 , we have the following:

(1 + 𝑜 (1))
[
𝜔+

(𝜔+
𝑘

)𝑘
− 𝑏

(𝜔+
𝑘

)𝑘+1

− 𝑏

]
= (1 + 𝑜 (1)) (𝑘 − 𝑏) (\ )

𝑘 − 𝑏
= (1 + 𝑜 (1)) [\ − 𝑏] .

Furthermore, let Y > 0 and set 𝜔− = (1 − Y) 𝑘+1

√︃
𝑘𝑘 · 𝑘\

𝑘−𝑏 .

A similar calculation as above shows that for sufficiently large \ we have:

(𝜔− − 1)
(
1 + 𝜔−

𝑘

)𝑘
−

(
𝑏 − 𝑏

𝑘
+ 𝑎𝜔−

𝑘

) (
1 + 𝜔−

𝑘

)𝑘
≥ (1 − 3𝑘Y) [\ − 𝑏] .

Thus, 𝜔 = 𝑂

(
𝑘+1

√︃
𝑘𝑘 𝑘\

𝑘−𝑏

)
satisfies (10) for sufficiently large 𝜔 , fixed 𝑘 ≥ 1, and 𝛽 = 𝑏𝐿

2
s.t. 𝑏 ∈ (1, 𝑘).

To show part (b) for REGIME-2, observe that the right-hand side of (10) can be approximated as(
1 + 𝜔

𝑘

)𝑘 ≈ 𝑒𝜔 when 𝑘 → ∞. Then by taking limits on both sides, we obtain the following:

𝑈 − 𝐿 − 2𝛽

𝐿 (𝜔 − 1) − 2𝛽 (1) = 𝑒𝜔 .

Let 𝛽 = 𝑏𝐿/2 as outlined above. We then obtain the following:

𝑈 − 𝐿 − 𝑏𝐿

𝐿 (𝜔 − 1) − 𝑏𝐿
=

\ − 1 − 𝑏

𝜔 − 1 − 𝑏
= 𝑒𝜔 =⇒ \ − 1 − 𝑏 = (𝜔 − 1 − 𝑏) 𝑒𝜔 .

By definition of the Lambert𝑊 function, solving this equation for 𝜔 obtains part (2). □

C PROOFS OF LEMMAS 10 AND 11
In this section, we give the deferred proofs of Lemmas 10 and 11, which are used in the proofs of

Theorem 4 and Theorem 5, respectively.

Proof of Lemma 10. We show that the following holds for any 𝑗 ∈ [0, 𝑘], by Definition 1:

𝑗∑︁
𝑖=1

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽 ≤ 𝛼 · (𝑘ℓ𝑗+1 + 2𝛽).
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First, note that 𝑘ℓ𝑗+1 = 𝑘 (𝑢 𝑗+1 − 2𝛽) for all 𝑗 ∈ [0, 𝑘], by Observation 3. This gives us the following:

𝑗∑︁
𝑖=1

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + 2𝛽 ≤ 𝛼𝑘𝑢 𝑗+1 + 𝛼2𝛽 − 𝛼𝑘2𝛽,

𝑗∑︁
𝑖=1

𝑢𝑖 + (𝑘 − 𝑗)𝑈 + [2𝛽 − 𝛼2𝛽 + 𝛼𝑘2𝛽] ≤ 𝛼𝑘𝑢 𝑗+1,

(𝑘 − 𝑗)𝑈
𝛼𝑘

+
∑𝑗

𝑖=1
𝑢𝑖

𝛼𝑘
+

[
2𝛽

𝛼𝑘
− 2𝛽

𝑘
+ 2𝛽

]
≤ 𝑢 𝑗+1.

By substituting Def. 1 into

∑𝑗

𝑖=1
𝑢𝑖 , the above can be simplified exactly to the closed form for 𝑢 𝑗+1:

𝑈

𝛼
− 𝑗𝑈

𝛼𝑘
+

(∑𝑗

𝑖=1
𝑢𝑖

𝛼𝑘

)
+

[
2𝛽

𝛼𝑘
− 2𝛽

𝑘
+ 2𝛽

]
= 𝑢 𝑗+1,[

𝑈 −
(
𝑈 − 1

𝛼

) (
1 + 1

𝛼𝑘

) 𝑗 ]
+

[(
2𝛽

𝛼𝑘
− 2𝛽

𝑘
+ 2𝛽

) (
1 + 1

𝛼𝑘

) 𝑗 ]
= 𝑢 𝑗+1 .

and the claim follows by the definition of 𝑢 𝑗+1. □

Proof of Lemma 11. We show that the following holds for any 𝑗 ∈ [0, 𝑘], by Definition 2:

𝜔 ·
(

𝑗∑︁
𝑖=1

ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽

)
≤ 𝑘𝑢 𝑗+1 − 2𝛽.

First, note that 𝑘𝑢 𝑗+1 = 𝑘 (ℓ𝑗+1 + 2𝛽) for all 𝑗 ∈ [0, 𝑘], by Observation 3. This gives us the following:

𝑗∑︁
𝑖=1

ℓ𝑖 + (𝑘 − 𝑗)𝐿 − 2𝛽 ≤
𝑘ℓ𝑗+1

𝜔
− 2𝛽

𝜔
+ 𝑘2𝛽

𝜔
,

𝑗∑︁
𝑖=1

ℓ𝑖 + (𝑘 − 𝑗)𝐿 −
[
2𝛽 − 2𝛽

𝜔
+ 𝑘2𝛽

𝜔

]
≤

𝑘ℓ𝑗+1

𝜔
,

𝜔

(∑𝑗

𝑖=1
ℓ𝑖

)
𝑘

+ 𝜔 (𝑘 − 𝑗)𝐿
𝑘

−
[
𝜔2𝛽

𝑘
− 2𝛽

𝑘
+ 2𝛽

]
≤ ℓ𝑗+1.

By substituting Def. 2 into

∑𝑗

𝑖=1
ℓ𝑖 , the above can be simplified exactly to the closed form for ℓ𝑗+1:

𝜔𝐿 − 𝜔 𝑗𝐿

𝑘
+
𝜔

(∑𝑗

𝑖=1
ℓ𝑖

)
𝑘

−
[
𝜔2𝛽

𝑘
− 2𝛽

𝑘
+ 2𝛽

]
= ℓ𝑗+1,[

𝐿 + (𝜔𝐿 − 𝐿)
(
1 + 𝜔

𝑘

) 𝑗 ]
−

[(
𝜔2𝛽

𝑘
− 2𝛽

𝑘
+ 2𝛽

) (
1 + 𝜔

𝑘

) 𝑗 ]
= ℓ𝑗+1.

and the claim follows by the definition of ℓ𝑗+1. □
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D PROOFS OF LOWER BOUND RESULTS
This section formally proves the lower bound results for OPR-max, building on the proof for OPR-min
provided in Section 5.2.

D.1 Proof of Theorem 9 (OPR-max Lower Bound)
Proof of Theorem 9. Let ALG be a deterministic online algorithm for OPR-max, and suppose

that the adversary uses the price sequence 𝑢1, . . . , 𝑢𝑘 , which is exactly the sequence defined by (6).

𝑢1 is presented to ALG, at most 𝑘 times or until ALG accepts it. If ALG never accepts 𝑢1, the remainder

of the sequence is all 𝐿, and ALG achieves a competitive ratio of
𝑘𝑢1−2𝛽

𝑘𝐿−2𝛽
= 𝜔 , as defined in (8).

If ALG accepts 𝑢1, the next price presented is 𝐿, repeated at most 𝑘 times or until ALG switches to
reject 𝐿. After ALG has switched,𝑢2 is presented to ALG, at most 𝑘 times or until ALG accepts it. Again,
if ALG never accepts 𝑢2, the remainder of the sequence is all 𝐿, and ALG achieves a competitive ratio

of at least
𝑘𝑢2−2𝛽

𝑢1+(𝑘−1)𝐿−4𝛽
= 𝜔 , as defined in (8).

As the sequence continues, whenever ALG does not accept some 𝑢𝑖 after it is presented 𝑘 times,

the adversary drops the price to 𝐿 for the remainder of the sequence. Otherwise, if ALG accepts 𝑘
prices before the end of the sequence, the adversary concludes by presenting𝑈 at least 𝑘 times.

Observe that any ALGwhich does not immediately reject the first 𝐿 presented to it after accepting

some 𝑢𝑖 obtains a competitive ratio strictly worse than 𝜔 . To illustrate this, suppose ALG has just
accepted 𝑢1, achieving a profit of 𝑢1 − 𝛽 so far. The adversary begins to present 𝐿 prices, and ALG
accepts 𝑦 ≤ (𝑘 − 1) of these 𝐿 prices before switching away. If 𝑦 = (𝑘 − 1), ALG will accept 𝑘 prices

before the end of the sequence and achieve a competitive ratio of
𝑘𝑈 −2𝛽

𝑢1+(𝑘−1)𝐿−2𝛽
> 𝜔 . Otherwise, if

𝑦 < (𝑘 − 1), the profit achieved by ALG so far is at most 𝑢1 − 2𝛽 + 𝑦𝐿, while the profit achieved by

ALG if it had immediately switched away (𝑦 = 0) would be 𝑢1 − 2𝛽 – since any price which might

be accepted by ALG in the future should be ≥ 𝐿, the latter case strictly improves the competitive

ratio of ALG.
Assuming that ALG does immediately reject any 𝐿 presented to it, and that ALG accepts

some prices before the end of the sequence, the competitive ratio attained by ALG is at least

𝑘𝑢 𝑗+1−2𝛽∑𝑗

𝑖=1
𝑢𝑖−( 𝑗+1)2𝛽+(𝑘− 𝑗 )𝐿

= 𝜔 , as defined in (8).

Similarly, if ALG accepts 𝑘 prices before the end of the sequence, the competitive ratio attained

by ALG is at least
𝑘𝑈 −2𝛽∑𝑘
𝑖=1

𝑢𝑖−𝑘2𝛽
= 𝜔 , as defined in (8).

Since any arbitrary deterministic online algorithm ALG cannot achieve a competitive ratio better

than 𝜔 playing against this adaptive adversary, our proposed algorithm DTPR-max is optimal. □
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