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There has been significant growth in both utility-scale and residential-scale solar installations in recent years,

driven by rapid technology improvements and falling prices. Unlike utility-scale solar farms that are profes-

sionally managed and maintained, smaller residential-scale installations often lack sensing and instrumenta-

tion for performance monitoring and fault detection. As a result, faults may go undetected for long periods

of time, resulting in generation and revenue losses for the homeowner. In this article, we present SunDown, a

sensorless approach designed to detect per-panel faults in residential solar arrays. SunDown does not require

any new sensors for its fault detection and instead uses a model-driven approach that leverages correlations

between the power produced by adjacent panels to detect deviations from expected behavior. SunDown can

handle concurrent faults in multiple panels and perform anomaly classification to determine probable causes.

Using two years of solar generation data from a real home and a manually generated dataset of multiple solar

faults, we show that SunDown has a Mean Absolute Percentage Error of 2.98% when predicting per-panel

output. Our results show that SunDown is able to detect and classify faults, including from snow cover, leaves

and debris, and electrical failures with 99.13% accuracy, and can detect multiple concurrent faults with 97.2%

accuracy.
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1 INTRODUCTION

Recent technological advances and falling hardware price have led to significant growth in the de-
ployment of renewable solar within the electric grid. The cost of solar deployments have dropped
to less than $2.75 per watt in recent years [2] and have become competitive with traditional en-
ergy sources. As a result, utility-scale and residential-scale solar deployments have experienced
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sustained growth across the world, with more than 2.6 GW of deployments in 2019 Q3 in the U.S.
alone [2].

Typically, larger utility-scale solar farms are professionally monitored and maintained for op-
timal performance—they are instrumented for monitoring real-time generation to identify pro-
duction issues, and also cleaned frequently to reduce dust or pollen. Researchers have also sug-
gested using drones carrying thermal cameras to identify and locate faults in large solar arrays
[8]. However, the majority of solar installations today are small-scale installations, often on resi-
dential rooftops, with capacities of less than 10 kW in 2018 [1]. Due to cost reasons, such systems
lack sensing and instrumentation that may be present in larger utility-scale solar farms. Further,
monitoring of these systems is left to homeowners, who lack the technical expertise for this task.
At best, system performance may be monitored at a coarse-grain systemwide basis to determine
system-level issues. As a result, it is not uncommon for residential solar arrays to encounter power
anomalies or other local faults that go undetected for long periods of time, resulting in a loss of
generation and revenue for the owner. While it is possible to add sensors and instrumentation for
real-time monitoring, doing so for small-scale installations increases their cost, and is challenging
to do for millions of installations that are already operational without such capabilities.

In addition to initially detecting an anomaly, classifying the type of anomaly is important for
several reasons. First, some anomalies “go away” after a few days, e.g., snow that melts or slides
off, and do not need any action. In contrast, some anomalies “persist” for days, e.g., electrical
fault or wet dust/leaves, and require immediate action. Second, manual inspection is quite labor-
intensive and expensive, possibly requiring travel to the sites that are remote, which is especially
true for utility-scale solar sites that typically do not have on-site maintenance. Third, classification
shows the difference between shading and other types of issues, which is useful. If fault is small
compared to a site’s size, then the operator may decide to postpone an inspection until next regular
inspection.

To address these challenges, we present SunDown, a sensorless approach for detecting and classi-
fying per-panel faults in small-scale solar arrays. Prior work on per-panel solar anomaly detection
are based on time-series [19] or statistical [5, 35] analysis of a panel’s output or use of sensors such
as a pyranometer [16] to detect faults. In contrast, our approach uses the actual output from other

nearby panels to estimate each panel’s expected output and find anomalous deviations from this
estimate. SunDown assumes that per-panel generation information is available from the array—an
assumption that holds true for any installation that uses micro-inverters or DC power optimizers—
and uses a model-driven approach to detect when the panel output deviates in an anomalous man-
ner from the model-predicted output. Our approach is based on machine learning and can detect
physical anomalies such as snow obstructions, leaves, and electric faults at panels. Our approach
seeks to identify and alert solar owners of such issues in a timely manner so that they can be
rectified to avoid production losses.

In designing, implementing, and evaluating SunDown we make the following contributions.

• We present a model-driven approach, based on machine learning, that leverages correlations
in the generated output between adjacent panels to predict the expected output of a particu-
lar panel and flags anomalies when the model predictions deviate from the expected values.
Further, our approach can handle and detect multiple concurrent faults in the system.
• We present a random forest-based classification technique to classify the probable cause of

the observed fault. To validate our approach, we construct two labelled datasets of solar
anomalies: a two year dataset from a real-home with real snow cover anomalies that we
hand label using ground-truth information and a solar anomaly dataset that we construct
with a 20-panel array by injecting synthetic faults such as dust, leaves, and open circuit faults.
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Fig. 1. A residential solar array (right) with 31 panels deployed on four roof planes and real-time panel-level

generation data from the array (left).

Since there is a dearth of solar anomaly datasets, we release both datasets and our code as
open-source tools to the community.
• We conduct a detailed experimental evaluation of our methods. We show that our approach

has a Mean Absolute Percentage Error (MAPE) of 2.98% when predicting per-panel out-
put, which shows the efficacy of using neighboring panels to perform model-driven predic-
tions. Our results also show that SunDown is able to detect and classify faults such as snow
cover, leaves, and electrical failures with 99.13% accuracy for single faults and is able to han-
dle concurrent faults in multiple panels with 97.2% accuracy. Our results also demonstrate
that the approach is robust to the solar site’s asymmetries (different orientation, different
shading), as the solar site used in experiments has many asymmetries (as shown in Figure 1).

2 BACKGROUND

In this section, we present background on residential solar arrays and solar anomaly detection.

2.1 Residential Solar Arrays

Our work primarily focuses on residential solar arrays, such as ones often found on residential
rooftops. Such installations are typically small-scale installations with capacities of 10 kW or less
and comprise a few to a few dozen solar panels (see Figure 1). Since we are interested in monitoring
anomalies and faults at a per-panel level, we assume that the power generation of the array can
be monitored at a per-panel level.

This is a reasonable assumption in practice, since many residential arrays are equipped with
micro-inverters (e.g., Enphase micro-inverters [3]) or DC power optimizers [4] on each panel that
are designed to track and independently optimize the power generation of each individual panel.
Such installations, which are now commonplace, are advantageous, since they maximize the total
system output even for deployments that span multiple roof surfaces and under partial shading-
effects. As shown in Figure 1, such systems provide real-time per-panel generation data, which
is essential for our approach. Other than knowledge of per-panel output, we do not assume any
other sensors or instrumentation on the residential solar installation. Thus, we seek to develop a
sensor-less approach for per-panel solar anomaly detection.

2.2 Solar Generation

It is well-known that solar generation at any site depends directly on the amount of sunlight—
solar irradiance—received at that location. The solar irradiance is a function of the latitude and
longitude of that location and the season of the year [22]. Of course, the weather—specifically
cloud cover—can reduce the solar irradiance at a particular site. For the purpose of this work, we
assume that per-panel solar generation on any given day can be reduced to two factors: transient,
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which comprises of factors that temporarily impact power output, and faults that comprise factors
that have a prolonged negative impact on output.

Transient factors include weather conditions such as cloud cover, wet panels caused by rain or
dew, as well as site specific factors such as shading caused by nearby trees or other structures. We
can classify transient factors into two classes—common or local. Common transient factors are
those that impact all panels of a particular site such as overcast condition or rain. Local factors are
those that impact a particular panel, or a group of panels, but not all of the panels at that site. For
example, many shading effects may impact a portion of the site, depending on the foliage and the
location of the sun.

2.3 Solar Faults

Anomalies (also referred to as faults) in our case are defined to be factors that cause a persistent
drop in production but can be rectified by the owner of the site. We are particularly interested in
the following three types of faults (1) snow cover on one or more panels, (2) partial occlusions such
as bird droppings, dust or leaves on a panel, (3) electric faults such as module failure, short circuits
or open circuits. These faults cause either a reduction in output or zero output for a particular
panel or a subset of panels.

Due to their close proximity to one another, multiple panels in a residential array may experience
the same fault—for example, snow may cover multiple adjacent panels (or even the entire system),
resulting in concurrent faults. Of course, a site may also suffer a full system outage, which is also
a fault but is easier to detect than those that cause partial outages or partial output reduction.

2.4 Other Sensorless Approaches

There have been other sensorless approaches for solar fault identification, both at a system and
per-panel level. There is prior work on solar fault detection and analysis using drones and com-
puter vision, which does not require instrumentation on the solar site [6, 23]. There is also prior
work that uses historical data to model the power output of the panel or system under different
conditions and uses this model to predict the current output and compare it to observed values.
For instance, such approaches have been based on time-series [19] or statistical [5, 35] analysis of
a panel’s output or use of sensors such as a pyranometer [16] to detect faults. However, historical
data dependency prevents using these approaches for newer installations until enough history (6+
months) is available. Spatial methods do not need as much temporal history, since they exploit spa-
tial relationships. Additionally, even state-of-the-art models that use historical data for predicting
future solar power generation, e.g., hybrid physical and ML models, have an ≈20% MAPE when
trained and tested at the same solar site [11]. Such a large error is not suitable for detecting and
classifying anomalies that experience small deviations. As a result, rather than using temporal cor-
relations in output on a particular panel, our approach uses spatial correlations that exist between
outputs of neighboring panels, a complementary approach that enables a model to be trained for
a site without requiring a lot of historical data (e.g., new sites).

2.5 Problem Statement

Consider a solar array with N solar panels. We assume that the panels are mounted on a residential
roof and may be mounted on one or multiple roof planes. Note that in the latter case, panels will
have different tilts and orientations. We assume that the power generated by each panel can be
monitored in real time and that the weather at the site is also known (e.g., from a weather service).
Given such a setup, our problem is to design a technique that monitors the power output of each
panel and the entire system, and labels the observed output in each time interval (e.g., a day) as
normal or abnormal. Further, our technique should identify specific solar panels in the system that
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are experiencing faults and also determine possible cause of the fault (e.g., snow, partial occlusion,
or electric fault).

3 PER-PANEL SOLAR ANOMALY DETECTION

In this section, we describe our model-driven approach for per-panel solar fault detection and how
we can build on this approach to perform multiple fault detection. We first describe the basic idea,
followed by the details of our models and algorithms.

3.1 Basic Idea

Consider a solar installation with N panels. Suppose that k panels are experiencing an anomaly
that result in a reduction, or loss, of output from those panels. Initially, let us assume k = 1 (only
one panel out of N is faulty). Later, we show how our approach can be extended to handle multiple,
concurrent faults where k > 1.

Since all N panels are mounted on the same roof in close proximity of each other, it follows
that they experience highly correlated weather conditions, and produce similar output. Thus, our
“sensorless” approach first constructs a model to predict the expected output of a panel from n
neighboring panels (n ≥ 1). For example, a simple predictor is one that uses the mean output of n
neighboring panels to estimate a particular panel’s output. Under normal conditions, since adjacent
panel outputs are highly correlated, the model prediction will match the observed output of that
panel with high accuracy. Note that any n out of the available N panels can be chosen to model
the output of a particular panel. A useful heuristic is to use the “closest” n panels to the one being
predicted or to use the n panels on the same roof plane, since they will have higher correlations
than those on a different roof surface of the same house. In our evaluation, we experimentally
evaluate the accuracy of these heuristics and also evaluate the value of n that yields sufficient
accuracy.

When a panel experiences an anomaly, however, the model predictions will continue to estimate
the “normal case” output of that panel, while the observed output will deviate from this normal case.
If the deviation is “large” and persists over an extended period of time, then it is indicative of a fault,
rather than an error in the model prediction. The quantitative value of “large,” in terms of expected
power deviation, depends on the expected error in the predictor used to get the panel’s expected
normal output. The deviation should be greater than the expected error in the predictor. Based
on the expected error, the threshold for an anomaly can be set to a value >(expected error). Any
observed deviations greater than the expected error are then labeled as an anomaly. The amount of
time the deviation should persist is configured to avoid shading or similar effects from raising false
positives. In general, an anomaly should persist for a period of days, rather than minutes or hours.
As we show in Section 4, the right number of days can be empirically determined using analysis of
historical anomalies data. The cause of the fault can be separately determined by analyzing amount
of loss or the power pattern exhibited by the panel. Such a model-driven approach only uses the
observed output of panels to detect anomalies—no other instruments or sensors are needed for
anomaly detection unlike some other approaches [8].

3.2 Model-based Predictions

Based on the above intuition, we now present two model-driven techniques for predicting the
power output of an individual panel using neighboring panels. Our first model is based on linear
regression and uses only power output of panels as input parameters to make predictions. Our
second model is based an a probabilistic graphical model and half-sibling regression.

3.2.1 Linear Regression-based Model. Since the power generated by solar panels in close prox-
imity of one another are highly correlated, we can use regression to predict the output of a panel
given the observed output of neighboring panels.
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Let Pi denote the observed power output of panel i at time instant i . Let us assume we wish to
predict the output of panel i using n other panels. Typically, we can choose n nearest panels, or
n panels on the same roof plane, from the N total panels on the roof. A linear regression model
allows us to estimate the output of desired panel as a linear function of the others:

Pi = wiPi1 +w2Pi2 +w3Pi3 + · · · +wnPin + ϵi , (1)

where X = {i1, i2, . . . , in } is the set of n panels used to model the output of the ith panel. We can
use linear regression to estimate the weight wi that minimize the error term ϵi .

Such an approach yields N distinct regression models, one for each panel in the system, where
each model makes prediction using the observed output of n other panels. To determine if a panel

has a fault, we compare the model predictions at time t , Pi (t ) with the observed value P̂ . If the
difference between the model predictions and observed values is large and persists over a period
of time (e.g., a day or multiple days), then the approach flags that panel as faulty.

3.2.2 Graphical Model and Half-Sibling Regression. Our second model is based on a recently
proposed machine learning technique called half-sibling regression that uses a Bayesian approach
to remove the effects of confounding variables [33]. This approach has been used by astronomers
to remove noise from measurements of multiple telescopes observing the same phenomena. The
main intuition behind the approach can be understood from the astronomy use-case. Suppose
that n + 1 telescopes are observing the same object such as star. The observations will have
some “common” noise introduced by factors such as air pollution or haze that impact visibility
of the object. Furthermore, each telescope will have local factors such as instrument calibration
error that introduce additional local errors. If we use observations of n telescopes to estimate the
expected observation of the (n + 1)-st instrument, and take the difference between the observed
and predicted values, then we are left with the local errors (“anomalies”) at that instrument. In
our case, we have n + 1 solar panels “observing” the sun—their power output represent their
observations of the sun. All panels see common factors such as clouds that introduce similar
output reductions in the power values. Further, each panel has local factors such as shade
(transient factors) or faults that can result in additional reductions in the power output. If we use
n panels to predict the output of the n + 1-st panel using a Bayesian model, then the difference
between the predictions and observed output should isolate local factors including the effect of
faults. This is the intuition behind using the Bayesian approach in Reference [33].

More recently, this approach was used in a system called SolarClique [21] to predict the output
of an entire array using nearby solar arrays. We draw inspiration from the half-sibling regression
paper [33] and SolarClique [21] for SunDown’s anomaly detection, but point out important differ-
ences between the SolarClique method and our approach as shown in Table 1. First, SolarClique
is designed for system-level predictions (predicting the total generation of an entire array) and
does not have the capability of making fine-grain per-panel predictions, which is the focus of our
method. Second, a key technical limitation of SolarClique is that it assumes a single fault can occur
at a time, and that the system is not capable of scenarios where multiple arrays are faulty. This is a
reasonable assumption for SolarClique, since it uses n arrays from n different homes to predict the
output of a specific home, and faults across arrays and homes can be assumed to occur indepen-
dently. In our case, since panels are in close proximity to one another, the same fault (e.g., snow)
can impact multiple panels, and faults therefore no longer occur independently. Since the inde-
pendence assumption of SolarClique does not hold in our case, a key technical improvement over
prior work is our ability to handle multiple faults (as discussed in the next section). For simplicity,
we first assume a single fault in the entire system and present our approach. We then relax the
assumption in the next section and show how the basic model can be extended to handle multiple
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Table 1. A Comparison of the State-of-the-art SolarClique System

and Our SunDown Approach

SolarClique SunDown
Per-Panel faults No Yes
Systemwide faults Yes Yes
Multiple faults No Yes
Anomalies
Detected

Systemwide
electrical

Snow, electrical,
occlusion

Fig. 2. Graphical model representation.

concurrent faults. A final difference is that SolarClique did not focus on fault classification (and
only detects large system-level electrical failures) while SunDown can identify multiple types of
faults, including snow cover, occlusion faults and electrical faults.

To describe our Bayesian model, let P be a random variable denoting the power output of a
particular panel. Let X denote a random variable representing the power output of n other panels
in the system. Hence, X is a vector of size n. Let C denote the confounding variables that impact
bothX and P . In our case,C denotes common confounding variables such as cloud cover that have
the “same” impact on panels. Let L denote the local factors and asymmetries between panels that
impact the output of an individual panel. L will include transient factors, including partial shading,
as anomalies that locally impact P . The relationship between P , X , L, andC can be captured using
a (causal) graphical model as shown in Figure 2. Since the output of each panel can be directly
monitored, P and X are observed variables, while C and L are latent unobserved variables.

As can be seen, P depends on both L and C while X depends only on C (and is independent of
L). C impacts X , and when conditioned on P , P becomes a “collider,” making X and L dependent.
To reconstruct L using half-sibling regression, we assume the following additive model:

P = L + f (C ). (2)

Since C is unobserved, we can use X (which is observed) to approximate f (C ). If X exactly
approximate the function f (C ), then we can then compute f (C ) on E[f (C ) |X ]. Even otherwise, if
X is a sufficiently large vector, then it can yield a ground approximation. Thus, we can use X to
predict P and recover L from Equation (2) as

L̂ = P − E[P |X ]. (3)

Note that L̂ estimates both anomalies and transient factors, and the impact of transient factors
must be removed from L to estimate the anomaly.

Given these concepts, our algorithm to estimate the amount of production loss due to anomalies
is as follows.

We first use regression to estimate P using X . This is similar to the linear regression method
from the prior section. The regression yields E[P |X ]—an estimate of P given the observed output of
n neighboring panels that constituteX . Since P itself is observed, subtracting E[P |X ] from P yields
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an estimate of the output loss L̂ due to transient factor and anomalies as shown in Equation (3). A
key difference between linear regression model of Section 3.2.1 and here we use bootstrapping to
construct multiple regression model by subsampling the data (instead of a single regression model)
and use an ensemble method based on Random Forest that uses the mean of multiple models to
estimate E[P |X ].

Next, since L̂ contains effects of transient factors such as shade on panels as well anomalies, we
must remove the impact of transient factors to obtain the “true” anomalies. We can use time-series
decomposition to extract the seasonal component that represents shading effect that occur daily

at set time periods and remove it from L̂ [21]. The remainder of L̂ represents production loss at

that panel due to any anomalies. Under normal operation L̂ will be close to zero (no anomalies and

no loss of output). When L̂ is significant and persistent over a period of time, our model-driven
approach flags an anomaly in the panel.

3.3 Handling Multiple Concurrent Faults

Both our regression and Bayesian models use the power output of n panels to predict the expected
output of another panel. A very important assumption is that the n panels being used as inputs to
the model are non-faulty and hence be used to predict the normal case output of another panel. An
anomaly is flagged when the model prediction of normal case output deviates from the observed
output, indicating the presence of an anomaly.

This approach works well when there is only one faulty panel in the system—which implicitly
implies that all remaining panels are non-faulty and any model that uses some of these remaining
panels to make predictions will have “clean” non-faulty inputs. However, due to the close proximity
of panels, anomalies such as snow cover, dust, leaves, are likely to impact multiple panels. In this
case, some of the inputs to the model may come from faulty panels, causing model prediction
to have high errors. Of course, if n is made large and only a small number of panels are faulty,
then the model may be able to tolerate the “noise” in a small number of inputs and still produce
reasonable accurate prediction. However, many residential rooftops may have a small number of
panels, which means n can not always be large. Hence, we need an explicit method to tolerate the
impact of multiple concurrent faults in the system.

Observe that our models use any n out of N total panels to predict the output of panel i . Thus, it
is possible to construct multiple models for each panel by choosing different subsets of n panels out
of N , and then using them as inputs to predict the output of panel i . In the normal case (no faults),
all of these models show similar predictions for panel i’s output. However, when multiple panels
are faulty, any model that uses faulty panels as input will have higher errors while a model that
uses all non-faulty inputs will continue to provide good predictions. Our goal then is to construct
multiple models for each panel using our Bayesian or regression method, and then choose one of
these models at each instant that uses non-faulty inputs.

To do so, we need to distinguish between faulty and non-faulty inputs. However, since the mod-
els are themselves being used to detect faults, we need a different method to determine which
inputs are possibly faulty. To do so, we use a solar forecasting approach that predicts the out-
put of the solar panel based on weather forecasts. There is extensive work on solar forecasting
using weather forecasts and any such model can serve our purpose. We use a machine learning
forecasting-based model that uses the location of the system (longitude and latitude), time of day,
past power observations and near-term weather forecasts (e.g., sunny, cloudy) to estimate the
output of a panel [22]. This model, and many others, have been implemented into the Solar-TK
open-source library [9], which we leverage to design a custom forecasting model for each panel
in the system using near-term future weather forecasts.
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Fig. 3. A forecasting model is used to ensure non-noisy inputs to our Bayesian model.

Suppose that Pi (t ) is the estimate of power output of a panel i based on this forecasting model.

If Pi (t ) − P̂i is large, then it implies that expected output differs from the prediction and the panel
is possibly a “noisy” input. Our per-panel forecasting models perform these prediction for each
panels and labels it as “noisy input” or “normal input.” Any model that uses one or more noisy
panel as an input should be eliminated from consideration for anomaly detection purposes. That
is, SunDown chooses any regression or Bayesian model (out of multiple models for a panel con-
structed from different subsets comprising n panels) such that all inputs to that model are labelled
normal.

Consider the following example to illustrate the process (Figure 3). Suppose that a solar rooftop
install has four panels: A, B,C , D. We wish to predict the output of panel A using two other panels.
Suppose both A and B are faulty. Let us assume we have the following two half-sibling regression-
based Bayesian models, f1 and f2 to predict PA, the power output of panel A,

PA = f1 (PB , PC ), PA = f2 (PC , PD ), (4)

where model f1 predicts A using panels B and C as inputs, while f2 predicts A using C and D.
Our approach first predicts PA, PB , PC , and PD using per-panel machine learning solar forecasting
models for each of the four panels [9]. Since A and B are faulty, they get labeled noisy inputs.
Hence, f1 is eliminated from consideration, since one of its inputs, PB , is a noisy input and f2 is
chosen for prediction, since both its inputs, PC and PD , are labelled “normal.” Using model f2 yields
a better estimate for PA than model f2. Note that, doing so enables us to handle concurrent faults—
we can avoid using faulty panels as model inputs, and at the same time, use our Bayesian method
to identify the presence of multiple faults.

We note that our solar forecasting models are only used to identify noisy model inputs rather
than to determine anomalous solar output—although our solar forecasting models also provide an
estimate of the panel’s output, they are not suitable for anomaly detection. This is because they
use weather forecasts of cloud cover, along with other parameters, to estimate a panel’s output.
Forecasts of future weather are inherently error-prone, which means the forecasting model will
also have higher errors. Using a solar forecasting model directly for anomaly detection will also
have higher false positive (due to model errors). A higher error is acceptable when detecting noise
in input data, since noisy inputs due to anomalies will cause “large” deviations and are simple
to detect. In contrast, the Bayesian approach uses actual power output observations to estimate
a panel’s output for the purpose of anomaly detection, which yields a more accurate model and
reduces changes of false positives. As shown in Section 5.1.1, our model has less than 3% error. Con-
sequently, we use forecasting models to only identify noisy inputs and eliminate Bayesian models
with noisy inputs as shown in Figure 3; incorrectly labeling a panel as noisy due to forecasting
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Fig. 4. Residential home power output on an example day under (a) normal condition, (b) partial shading on

some panels on east side, and (c) snow covering on some of the panels.

Fig. 5. Panel output on sunny day in summer and winter and a cloud day.

error only causes some of the models to be suppressed for anomaly detection and does not impact
accuracy of the remaining models for finding faulty panels.

4 CLASSIFYING SOLAR ANOMALIES

While the previous section presented model-driven approaches to detect the presence of anomalies
in one or more panels, in this section, we present a classification approach to determine the possible
causes of the output loss seen at the panel(s).

4.1 Solar Anomaly Open Dataset

To assign a possible cause to an observed output loss, we must analyze the observed power pattern
and match it to the “power signature” exhibited by different type of solar faults. However, this
requires that we have ground-truth data for various type of faults, which is challenging, since
there are no open datasets of solar faults available for research use (solar farm operators likely
have such data but have not released it to others). Consequently, we need to gather our own data
with ground-truth information on solar faults.

Our anomaly dataset contains data from two residential scale solar installations:

(1) a 31-panel, 9-kW solar installation (Figure 1, top) that experienced multiple snow cover
anomalies (Figure 1, bottom) over its two year lifetime

(2) a 20-panel ground mounted solar installation (Figure 7) where we systematically introduce
anomalies such as dust, leaves, electrical faults, and so on, to mimic real-world faults and
measure its impact on the output.

We discuss each dataset in more detail before describing our classification method.

4.1.1 Snow Anomaly Dataset. This dataset comes from a residential solar array deployed on
a home in Northern America (location details removed for double blind renewing). The house
contains 31 rooftop panels, mounted on four different roof planes, as shown in Figure 1 (bottom).
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Fig. 6. Snow anomaly dataset.

Each panel is a 320-W LG panel with an Enphase micro-inverter that can optimize the panel’s
output independently of the rest. As noted earlier, micro-inverters optimize and report panel-level
generation data, which is a prerequisite for our models.

We have been gathering data from this system for over 2 years and have per-panel generation
information at 5-minute granularity from September 2017 to February 2020. We have also gathered
weather data for the location from DarkSky and NOAA weather service.

The only real anomaly encountered by this system over the two-year period is snow cover,
following a snow storm (the area receives frequent snowfall in the winter). Depending on how
long the snow sticks on the panels following a snow event, snow-covered panels may produce
little or no output. As snow melts, some panels generate output, while others stay covered with
snow (Figures 4(c) and 6(a)).

We have two sources of ground truth to label snow faults. First, the Enphase system sends
an email to the homeowner when it observes near zero output for an entire day, as shown in
Figure 6(b). The email indicates a “possible production” issue at the system. Second, DarkSky and
NOAA provide past weather data, such as snow events and the extent of the snowfall at an location.

We use both sources of information (which match closely with each other) to manually inspect
the per-panel generation data on a snow day and the following several days. We then hand label
each panel’s output as normal (if it produces any output) or as a snow anomaly (if the panel output
is near zero). This yields a hand-labelled dataset of snow anomalies.

4.1.2 Solar Anomaly Dataset. Using our 20-panel ground mounted experimental array and sen-
sors to measure its power output, we carefully introduced several types of anomalies onto specific
panels, and measured its impact on the power output. We conduct several data gathering experi-
ments over a period of several weeks under different conditions (sunny, partially overcast, overcast,
etc.) and gathered data for the following anomalies.

(1) Leaf occlusion: We introduced different number leaves on panels (partial occlusion anomaly)
and measured its impact

(2) Dust occlusion: We added different amounts of dust on the panels and measured its impact
(3) Water drops occlusion: We add varying amount of water drops on the panel and measure its

impact. This is designed to mimic morning dew on panels, which is not a true anomaly but
a weather effect

(4) Open circuit fault: We used a variable potentiometer to introduce a high resistance seen by
the panel to mimic an open circuit fault and measured its impact.

This hand-crafted anomaly dataset, along with photographs and labels, provides an additional
source of data for our experiments. For example, Figure 7 shows leaves on the panel that emu-
late a partial occlusion fault. Figure 4(a) and (c) depicts the output of the panels in normal condi-
tions and under a snow fault, respectively. Figure 10(a) and (b) illustrates the power output under
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Fig. 7. A synthetic leaf occlusion fault in our experimental array.

synthetically generated open circuit fault and a partial occlusion fault. We have released both
datasets to the research community.

4.2 Classifying Anomalies

Given anomalies detected by our Bayesian model we use a random forest classifier to label the
possible cause of the fault for each panel that is faulty. The classifier needs to distinguish between
three types of faults: snow, partial occlusion, and open circuit. Note that partial snow over on a
panel and partial occlusion faults both result in diminished but non-zero output. Full snow cover
on a panel and open circuit faults both yield zero output. To distinguish between these cases, we
first sample 40 randomly chosen points over an entire day and compute the percentage reduction
in power output when compared to the model predictions for each of these points. This power loss
vector is a key feature to our classifier. We also use two other features: month of the year and snow
depth values from NOAA weather service. We train our random forest classifier using a training
dataset of real snow and synthetic anomalies. Depending on the season (winter versus other sea-
sons) and the observed power loss over a period of time, our classifier can label the probable cause
of fault for each panel. In the current set of experiments, if the deviation greater than the specified
threshold persist for two days, then we classify the deviation as the anomaly. Our approach can
also label systemwide faults, caused either by a systemwide electrical failure or full snow cover on
the entire system, both of which cause near total loss of power output.

5 EXPERIMENTAL EVALUATION

We evaluate SunDown by quantifying (1) the accuracy of model-based power inference where
we infer the output of a single panel using nearby panels; (2) the impact of parameters such as
number of panels, roof geometry, and weather; and (3) the accuracy of our anomaly classification.
We quantify the accuracy of predicting a panel’s output using MAPE between the inferred output
and the actual solar generation, as follows:

MAPE =
1

m

m∑

t=1

�
�
�
�

PO (t ) − PI (t )

P̄O

�
�
�
�

, (5)

wherem is the number of samples, PO (t ) is the observed solar power at time t , PI (t ) is the inferred
power at time t , and P̄O is the mean of observed power generation. Equation (5) is an alternative
form of standard MAPE where we replace the denominator comprising a single observed value by
the mean of all observed values. The alternative form avoid divide by zero issues when the denom-
inator (and observed value) are zero. For the anomaly detection and classification tasks, our goal is
to correctly classify all the different anomalies. We use four different metrics to quantify different
aspects of the classification task: accuracy, precision, recall, and F1 score. The accuracy is com-
puted by dividing the number of correctly classified anomalies by the total number of anomalies.
Precision quantifies what proportion of predicted anomalies are true anomalies. Recall quantifies
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Fig. 8. Prediction model accuracy and the size of training data required.

what proportion of actual anomalies are predicted as anomalies. Finally, F1 score presents a bal-
ance between precision and recall: If either precision or recall is low, then F1 score will be low. The
different metrics are computed as follows:

Accuracy =
TP +TN

N
, Precision =

TP

TP + FP
, (6)

Recall =
TP

TP + FN
, F1 score =

2 × Precision × Recall
Precision + Recall

, (7)

where N is the total number of instances, TP is the number of anomalies correctly classified, TN
is the number of normal days correctly classified, FP is the number of normal days classified as
anomalies, and FN is the number of anomalies misclassified as normal days. Accuracy is used to
evaluate the overall model’s performance, while sensitivity and specificity are used to test how
accurate the model is to correctly detect the anomalies and normal cases.

5.1 Prediction Model Accuracy

We begin by evaluating the accuracy of predicting the power output of an individual panel using
neighboring panels.

5.1.1 Machine Learning Model. To evaluate the accuracy of model inference, we choose a test
data only from the days where the site experiences no anomaly. We then use the normal days
of the home dataset to train our linear regression and graphical model. We also compare their
performance with a naive approach that infers the power output of a panel as the mean output
of n other panels. We then compare the model predictions using a test dataset and compute the
MAPE values for each approach. As shown in Figure 8(a), the MAPE values for Bayesian model,
linear regression, and naive approach are 3%, 4%, and 8.6%, respectively. The naive approach has
the worst accuracy, since it all panels produce similar output, which is not true in many cases
due to panel-level variations. Linear regression works well when the output of different panels are
highly correlated and have a linear relation between them, which is not true when some of the
panels experience partially shading. Our graphical ensemble learning approach is able to model
non-linear relationships and yields highest accuracy and a tight confidence interval. We use the
graphical model for the subsequent experiments, unless stated otherwise.

5.1.2 Impact of Training Data Size. Next, we evaluate model accuracy for different amounts of
training data. If a model requires a lot of training data for good accuracy, then it can hinder its use
for recently deployed solar sites or for the sites where long-term panel-level data are not available.
We vary the training data size (by randomly choosing a certain number of days) and evaluate its
accuracy for predicting output using a test dataset. Figure 8(b) demonstrates that our model can
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Fig. 9. Effect of various factors on the model accuracy (a) number of panels, (b) roof geometry, and

(c) weather.

achieve a decent accuracy and a 10% MAPE with only one day of per-panel data. If the number of
days is increased to 4, then the MAPE drops to 3.5% and stays almost constant beyond four days.

Results. Our graphical model can predict per-panel output with 2.98% MAPE and outperforms
linear regression and a naive averaging approach. The random forest-based ensemble graphical
model does a better job of capturing non-linear relationships among less-correlated data than
linear regression. While model accuracy increases with training data size, even only four days
of training data yield good accuracy. This result also informs our selection of the threshold for
power deviation. The expected (mean) error for our graphical model is 2.98%. However, since the
maximum error we observe for our model is ≈5%; we set the anomaly threshold to be >5%; any
deviation greater than >5% is labeled as an anomaly.

5.2 Impact of Parameters

We next investigate various factors that impact the inference accuracy, including number of panels,
geometry of the solar deployment and weather.

5.2.1 Impact of Number of Panels. The individual solar panels at a site can demonstrate subtle
variations in their solar output, despite their close proximity, due to panel-level dust, different tilt
and orientation angles, and panel-level physical faults such as cracked glass. To evaluate how many
panels are need by a model to provide adequate accuracy, we vary n (the number of panels used by
the model as input) and compute MAPE for different n. Figure 9 shows inaccuracy is high when
using less than 3 panels for inference. The accuracy improves as number of panels is increased to 5
and shows diminishing gains beyond that. The model has an average MAPE value of only 3–4% and
a very tight bound, when using 5 panels, as compared to 9% MAPE with single panel. This result
suggests that SunDown requires as little as 5 panels to be highly accurate. A typical residential
site consists of 2–10 kW installations and contains 6–30 solar panels. As SunDown requires only
around 5 panels while yielding high accuracy, it is applicable to all types of solar sites, residential
or otherwise.

5.2.2 Roof Geometry Impact. The output of a solar panel depends upon its tilt and orientation,
among other factors [12]. Since a residential array may be installed on multiple roof planes, it is
preferable to use panels on the same roof plane to predict others, since they will have a similar tilt
and orientation and will exhibit higher correlations.

To evaluate the effect of roof geometry, we split the home dataset into four sub-datasets based
on the four roof planes where the panels are deployed. We created four graphical models to predict
the power output of ith panel by using n = 7 panels as inputs. For the east roof, west roof, and
lower roof cases, all seven input panels are mounted side by side on the same roof plane facing
the same direction. In the fourth scenario, we created a mixed dataset by combining two panels
from each east roof and west roof datasets, and three panels from the lower roof dataset. Figure 9(b)
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illustrates the inference accuracy as the geometry of panels used for inference varies. For the same
roof plane, the model is highly accurate and the MAPE value is between 3% to 3.2%. The large vari-
ation for the east roof is due to the partial shading on some of the panels on the roof, leading to
inaccurate inferences. To isolate the effect of shading, we used Solar-TK’s shade-adjustment mod-
ule that provides a shading factor, as a value between 0 and 1, that indicates the level of shading
on a solar site, where 0 means no shading and 1 means fully shaded. We adjust the output of our
shaded panels by this factor to get the expected power without shading. We ran the experiments
both with and without shading filtered out, and got the same results. This results illustrates that
(1) our approach can filter shading out if necessary, and (2) that in this case, our approach is robust
to any shading related anomalies, which tend to be small and transitory. The average MAPE of 5.5%
for the mixed dataset demonstrates that our model produces a reasonable accuracy even when in-
put panels are chosen from different roof planes. Thus, when knowledge of the roof geometry is
available, it should be exploited, but the model works well even for systems where the roof geom-
etry may be unknown causing the model to use panels from different roof planes for inference.

5.2.3 Impact of Weather. The weather at a solar site, primarily cloud cover, impacts the power
generation of a site. On a sunny day, all the solar panels produce similar amount of power. However,
on a cloud day, scattered clouds may only cover one or few of the panels leading to power variation
across panels, which can complicate inference. Figure 9(c) illustrates the effect of weather on the
accuracy of the inference task. Our model achieves similar mean accuracy on both sunny and
cloudy days, indicating it performs well regardless of weather. The higher variance in MAPE on a
sunny day is due to shading from nearby structures, and that has a more prominent impact on a
sunny day over a cloudy one.

Results. Our experiments show that the number of panels used for prediction as well as the roof
geometry play an important role in the model’s performance. We find that model yields higher
accuracy when five or more panels are used for predictions and when these panels are co-located
on the same roof plane. The weather conditions, however, do not impact model accuracy.

5.3 Anomaly Classification Accuracy

The previous section evaluated the accuracy of our model in predicting the output of a panel
using nearby panels. We next evaluate the accuracy of our model-driven approach and its classifier
in detecting and classifying anomalies, respectively. We compare the accuracy of our approach
against a baseline that uses a simple linear regression model to predict the panel-level output and
detect anomalies. The linear regression model is the same as shown in Figure 9. The classification
aspect of the linear regression-based approach are the same as our bayesian approach: Deviations
greater than 5% that persist for at least two days are considered anomalous. The common anomalies
we consider include snow fault, open circuit, and partial occlusions due to leaves. Although, others
factors such as partial shading also result in the loss of energy, we do not consider shade to be an
anomaly, since it it is a transient phenomena and does not need corrective action.

Our home dataset already includes real snow faults that are labelled and we evaluate the accu-
racy of our classifier on identifying these snow faults. We then use the synthetic faults from our
solar anomaly dataset and synthetically inject them into the home dataset by introducing synthetic
single panel faults as well as concurrent fault and evaluate the accuracy of our classifier. Figure 10
presents per-panel data for a typical day when electric fault or object covering anomaly has been
injected into one or many panels.

5.3.1 Snow Fault Detection. We first evaluate the ability of the baseline method and our clas-
sifier in detecting snow faults in the home dataset. Recall that the dataset is labelled as normal
or snow for each panel. We extract the features from daily power output, which include the
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Fig. 10. Synthetic fault injection with (a) open circuit fault, (b) leaves covering fault, and (c) multiple leaves

covering faults.

Fig. 11. Classification accuracy for our baseline linear regression anomaly detection method for (a) system-

level faults, (b) single panel faults, and (c) multiple panel faults.

Fig. 12. Classification accuracy for (a) systemwide snow faults, (b) single panel faults, and (c) multiple panel

faults.

Pearson’s correlation coefficient, ratio of maximum observed power and the nominal panel ca-
pacity, and weather data, such as snow and cloud cover, and use them as inputs to our random
forest classifier. Figure 11(a) and Figure 12(a) show the confusion matrix of the baseline method
and our classifier, respectively. Both our approach and the baseline method have the same observed
power output at the system-level and therefore have the same accuracy, since the two approaches
only differ in the anomaly detection part of the approach. Table 2 and Table 3 shows that both
methods are able identify system-level snow faults with an accuracy of 99.13%, precision of 0.9859,
sensitivity of 1.00, and the F1 score of 0.9947. The high values for precision, recall, and F1 score
means that even the baseline method does really well when identifying the system-level faults.
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Table 2. Classification Metrics for Our Baseline Linear Regression Anomaly Detection Method

Classification Accuracy Precision Recall F1 score

Single, panel-level (open-circuit) 98.78% 1.00 0.9583 0.9787

Single, panel-level (occlusion) 80.49% 0.7188 0.7667 0.7419

Multiple, panel-level (open-circuit) 93.84% 0.8696 0.8511 0.8602

Multiple, panel-level (occlusion) 88.15% 0.6731 0.8140 0.7368

Multiple, panel-level (snow) 86.73% 0.7222 0.7500 0.7358

System level (snow) 99.13% 0.9895 1.00 0.9947

Table 3. Classification Metrics for Our Model-based Approach

Classification Accuracy Precision Recall F1 score

Single, panel-level (open-circuit) 98.78% 1.00 0.9583 0.9787

Single, panel-level (occlusion) 98.78% 0.9677 1.00 0.9836

Multiple, panel-level (open-circuit) 98.56% 0.9400 1.00 0.9691

Multiple, panel-level (occlusion) 99.53% 0.9773 1.00 0.9885

Multiple, panel-level (snow) 97.16% 1.00 0.8966 0.9455

System level (snow) 99.13% 0.9895 1.00 0.9947

We note that snow faults seen in our dataset tend to be systemwide faults, where all panels get
covered with snow after a snow event and exhibit a snow fault concurrently. While it is certainly
possible for only some panels to have snow cover (e.g., if snow melts unevenly across panels), our
dataset presently does not have such faults.

5.3.2 Single and Concurrent Fault Classification. Since all observed snow faults in our dataset
were system faults, we next show that our approach is still capable of fine-grain anomaly detection
and classification of a single fault, and that it is also capable of detecting concurrent faults in a
subset of the panels.

To do so, we use our solar anomaly dataset and choose the partial occlusion and open circuit
anomaly from the dataset and inject these faults into a single, randomly chosen, panel of the array,
where different panels have faults injected into them on different days. We first use the baseline
method and our random forest classifier to identify the type of fault. We next use our model to
detect the presence of the fault and our random forest classifier to identify the type of fault. We
next inject multiple concurrent faults of all types—snow, occlusion, and open circuit—into the array
using a similar methodology and attempt to detect and classify each fault using our model and
classifier. Note that we need to use our concurrent fault detection approach in this case. For multi-
panel fault classification using the baseline method, we use the per-panel baseline fault detection
method for all the panels individually.

Figures 11(b) and 12(b) show the confusion matrix of classifying single faults in the array using
the baseline method and our proposed approach. Table 2 and Table 3 show that both the baseline
method and our approach show the same, high accuracy for single-panel open-circuit faults at
98.78%. The values for precision, recall, and F1 score are 1.00, 0.9583, and 0.9787, respectively. Both
approaches yield the same result as open-circuit faults are very easy to identify. The real benefit
of our approach is evident for single-panel occlusion faults where our model achieves a 98.78%
accuracy as compared to 80.49% accuracy for the baseline method. Our approach also improves
the precision from 0.7188 to 0.9677, recall from 0.7667 to 1.00, and F1 score from 0.7419 to 0.9836.

Figures 11(c) and 12(c) show the confusion matrix of classifying multi-panel faults in the array
using the baseline method and our proposed approach. Table 2 and Table 3 show that both the
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baseline method and our approach have a significantly higher accuracy for single-panel open-
circuit faults at 98.56% for our approach and 93.84% for the baseline linear regression. However, as
with single-panel faults, our approach shows the most significant improvement when classifying
more complex faults, such as occlusion and snow. The accuracy for occlusion faults increases
from 88.15% to 99.53%, while the accuracy for the snow faults increases from 86.73% to 97.16%.
Our approach also improves the F1 score for the open-circuit, occlusion, and snow anomalies
from 0.8602, 0.7368, and 0.7358 to 0.9691, 0.9885, and 0.9455, respectively. Table 2 and Table 3
show the values for all the classification metrics for both approaches. Sundown yields up to 30%
improvement over the baseline regression method for some metrics and at least 8% improvement
across all metrics the improvement is greater for more complex faults where baseline regression
incurs higher errors. Also, the high values of precision, recall, and F1 score mean that our approach
not only correctly classifies all the all the anomalous events to the correct category, but also does
not misattribute non-anomalous events to any anomaly.

Results. Our experiments demonstrate the efficacy of our fault detection and classification meth-
ods for real snow faults as well as synthetically injected single and concurrent panel-level faults.
Our results show that the random forest classifier is an effective approach for identifying both sys-
temwide faults as well as faults that occur on a subset of panels. Our approach is able to classify
snow, partial occlusion and open circuit faults with accuracy of more than 97% in terms of overall
accuracy, specificity, and sensitivity.

6 RELATED WORK

There has been significant work on predicting power output for solar sites [7, 9, 15, 28, 29, 32, 34].
All of these studies predict only system-level output and generally report 20–30% error. These
high errors and inability to predict panel-level output would cause their prediction for all panels
to be the same, and limit their ability to detect and classify anomalies. There is also significant
prior work on anomaly detection and classification in solar photovoltaic systems, which can be
broadly classified into model-based approaches [14, 17, 20, 24, 25] and machine learning-based [10,
13, 16, 18, 26, 27, 30, 31, 36, 37] approaches. Some of these studies use power data from nearby solar
sites [21, 35] to detect and classify anomalies. In Reference [35], authors compare the performance
of different solar arrays at the same site, but do not do anomaly classification. Our work uses
the output of other nearby panels to predict a panel’s output for detecting faults and can classify
various types of faults, i.e., snow, object covering, and electrical faults, on a single or multiple
panels.

7 FUTURE WORK

We are working on extending our approach in multiple directions as a part of future work. Our
evaluation in this article focuses on residential solar installations. However, our approach is also
applicable to utility-scale systems as well. Utility-scale systems present both opportunities and
challenges for SunDown’s approach. More data are often available from utility-scale arrays, such
as voltage and current, which could be leveraged by SunDown. Further, utility-scale deployments
are often optimized with less shading and consistent geometries that are easier for SunDown to
handle. At the same time, unlike residential-scale arrays that use micro-inverters to provide per-
panel generation, utility-scale installations use string inverters and may lack per-panel output
information. This will require our approach to be generalized to compare outputs on each “string”
of panels, rather than each panel individually. This makes the approach more tractable to larger
arrays with thousands of panels but also provides more coarse-grained anomaly information at
the granularity of groups of panels. Nevertheless, we expect the approach to be useful for utility-
scale systems that comprise thousands of panels, especially to decide what panels are in need of
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cleaning or repair. For example, to minimize maintenance costs, an operator may not necessarily
want to send out a technician until a certain number of panels are experiencing a fault.

Our anomaly detection approach requires a few days data to accurately predict per-panel so-
lar output. However, the anomaly classifier used in our approach needs a significant number of
anomalous events in each category for training purposes. This would require that the site has a
long history available. Our future work involves the design of a “universal” classifier that can be
trained using a collection of existing sites, and applied to new sites without additional training.
We also plan to include other types of anomalies, such as dust and other types of electrical faults.

8 CONCLUSIONS

In this article, we proposed SunDown, a sensorless approach to detecting per-panel anomalies
in residential solar arrays. Our approach uses a model-driven approach that leverages correla-
tions between the power produced by adjacent panels to detect deviations from expected behavior.
SundDown can handle faults in multiple panels and determine the probable cause of anomalies.
We evaluated SunDown using two year panel-level generation data from the from a real site and
a manually gathered dataset of various faults. Our approach requires data from only five panels
for accurate prediction, is agnostic to weather characteristics, and yields high accuracy even when
panels from different roof geometries are used. We show that our approach is accurate in pre-
dicting panel-level output with a MAPE of 2.98% and can correctly classify anomalies with >97%
accuracy. We released the per-panel dataset from the real site and the manually generated dataset
of various faults for research use.

REFERENCES

[1] Solar Market Insight Report. 2018. Year In Review. Retrieved March 2020 from https://www.seia.org/research-

resources/solar-market-insight-report-2018-year-review.

[2] Solar Market Insight Report. 2019. Q4. Retrieved March 2020 from https://www.seia.org/research-resources/solar-

market-insight-report-2019-q4.

[3] Enphase Microinverters. Retrieved from https://enphase.com/en-us/products-and-services/microinverters.

[4] SolarEdge Power Optimizer. Retrieved from https://www.solaredge.com/products/power-optimizer.

[5] Y. Akiyama, Y. Kasai, M. Iwata, E. Takahashi, F. Sato, and M. Murakawa. 2015. Anomaly detection of solar power

generation systems based on the normalization of the amount of generated electricity. In Proceedings of the IEEE 29th

International Conference on Advanced Information Networking and Applications (2015).

[6] M. Alsafasfeh, I. Abdel-Qader, B. Bazuin, Q. Alsafasfeh, and W. Su. 2018. Unsupervised fault detection and analysis

for large photovoltaic systems using drones and machine vision. Energies 11, 9 (2018).

[7] R. Andrews, J. Stein, C. Hansen, and D. Riley. 2014. Introduction to the open source PVlib for python photovoltaic

system modelling package. In Proceedings of the IEEE Photovoltaic Specialist Conference (2014).

[8] A. Arenella, A. Greco, A. Saggese, and M. Vento. 2017. Real time fault detection in photovoltaic cells by cameras on

drones. In Proceedings of the International Conference on Image Analysis and Recognition (2017), Springer.

[9] N. Bashir, D. Chen, D. Irwin, and P. Shenoy. 2019. Solar-TK: A. Data-driven toolkit for solar PV performance

modeling and forecasting. In Proceedings of the IEEE International Conference on Mobile Ad-hoc and Smart Systems

(MASS’19).

[10] M. Benedetti, F. Leonardi, F. Messina, C. Santoro, and A. Vasilakos. 2018. Anomaly detection and predictive mainte-

nance for photovoltaic systems. Neurocomputing (2018).

[11] D. Chen and D. Irwin. 2017. Black-box solar performance modeling: Comparing physical, machine learning, and hybrid

approaches. ACM SIGMETRICS Performance Evaluation Review (2017).

[12] D. Chen and D. Irwin. 2017. Sundance: Black-box behind-the-meter solar disaggregation. In Proceedings of the ACM

International Conference on Future Energy Systems (e-Energy’17).

[13] W. Chine, A. Mellit, V. Lughi, A. Malek, G. Sulligoi, and A. A. Pavan. 2016. Novel fault diagnosis technique for photo-

voltaic systems based on Artificial Neural Networks. Renew. Energy (2016).

[14] M. Dhimish, V. Holmes, and M. Dales. 2017. Parallel fault detection algorithm for grid-connected photovoltaic plants.

Renew. Energy (2017).

[15] N. Engerer and F. Mills. 2014. Kpv: A. Clear-sky index for photovoltaics. Solar Energy 105 (July 2014).

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 40. Publication date: September 2021.

https://www.seia.org/research-resources/solar-market-insight-report-2018-year-review
https://www.seia.org/research-resources/solar-market-insight-report-2019-q4
https://enphase.com/en-us/products-and-services/microinverters
https://www.solaredge.com/products/power-optimizer


40:20 M. Feng et al.

[16] P. Gao, L. Golab, and S. Keshav. 2015. What’s wrong with my solar panels: A data-driven approach. In Proceed-

ings of the International Conference on Extending Database Technology/International Conference on Database Theory

(EDBT/ICDT’15) Workshops.

[17] E. Garoudja, F. Harrou, Y. Sun, K. Kara, A. Chouder, and S. Silvestre. 2017. Statistical fault detection in photovoltaic

systems. Solar Energy (2017).

[18] F. Harrou, A. Dairi, B. Taghezouit, and Y. Sun. 2019. An unsupervised monitoring procedure for detecting anomalies

in photovoltaic systems using a one-class support vector machine. Solar Energy (2019).

[19] B. Hu. 2012. Solar Panel Anomaly Detection and Classification. MS Thesis, University of Waterloo, Canada.

[20] Y. Hu, B. Gao, X. Song, G. Tian, K. Li, and X. He. 2013. Photovoltaic fault detection using a parameter based model.

Solar Energy (2013).

[21] S. Iyengar, S. Lee, D. Sheldon, and P. Shenoy. [n. d.]. Solarclique: Detecting anomalies in residential solar arrays. In

Proceedings of the ACM SIGCAS Conference on Computing and Sustainable Societies. pp. 1–10.

[22] S. Iyengar, N. Sharma, D. Irwin, P. Shenoy, and K. Ramamritham. 2017. A cloud-based black-box solar predictor for

smart homes. ACM Trans. Cyber-phys. Syst. (2017).

[23] S. Kalayaraman. 2016. Cognitive Drones: Aerial Robotics and Nano Satellites in Cognitive iot Solutions. IBM Research

Report.

[24] B. Kang, S. Kim, S. Bae, and J. Park. 2012. Diagnosis of output power lowering in a PV array by using the kalman-filter

algorithm. IEEE Trans. Energy Convers (2012).

[25] K. Kim, G. Seo, B. Cho, and P. Krein. 2015. Photovoltaic hot-spot detection for solar panel substrings using AC param-

eter characterization. IEEE Trans. Power Electr. (2015).

[26] G. Liu and W. A. Yu. 2017. Fault detection and diagnosis technique for solar system based on elman neural network. In

Proceedings of the IEEE Information Technology, Networking, Electronic and Automation Control Conference (ITNEC’17).

IEEE.

[27] G. Liu, W. Yu, and L. Zhu. 2018. Condition classification and performance of mismatched photovoltaic arrays via a

pre-filtered elman neural network decision making tool. Solar Energy (2018).

[28] E. Lorenz, D. Heinemann, H. Wickramarathne, H. Beyer, and S. Bofinger. 2007. Forecast of ensemble power production

by grid-connected pv systems. In Proceedings of the 20th European PV Conference (2007), Milano.

[29] E. Lorenz, J. Hurka, D. Heinemann, and H. Beyer. 2009. Irradiance forecasting for the power prediction of grid-

connected photovoltaic ssystems. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. (2009).

[30] H. Mekki, A. Mellit, and H. Salhi. 2016. Artificial neural network-based modelling and fault detection of partial shaded

photovoltaic modules. In Simulation Modelling Practice and Theory (2016).

[31] J. Pereira and M. Silveira. 2018. Unsupervised anomaly detection in energy time series data using variational recurrent

autoencoders with attention. In Proceedings of the IEEE International Conference on Machine Learning and Applications

(ICMLA’18), IEEE.

[32] R. Perez, J. Schlemmer, S. Kivalov, J. Dise, P. Keelin, M. Grammatico, T. Hoff, and A. A. Tuohy 2018. New version

of the suny solar forecast model: A scalable approach to site-specific model training. In Proceedings of the IEEE 45th

Photovoltaic Specialists Conference (PVSC’18).

[33] B. Schölkopf, D. Hogg, D. Wang, D. Foreman-Mackey, D. Janzing, C. Simon-Gabriel, and J. Peters. 2016. Modeling

confounding by half-sibling regression. Proc. Natl. Acad. Sci. U.S.A. (2016).

[34] N. Sharma, P. Sharma, D. Irwin, and P. Shenoy. 2011. Predicting solar generation from weather forecasts using machine

learning. In Proceedings of the IEEE International Conference on Smart Grid Communications (SmartGridComm’11).

[35] S. Vergura. 2018. Hypothesis tests-based analysis for anomaly detection in photovoltaic systems in the absence of

environmental parameters. Energies (2018).

[36] Y. Zhao, Q. Liu, D. Li, D. Kang, Q. Lv, and L. Shang. 2018. Hierarchical anomaly detection and multimodal classification

in large-scale photovoltaic systems. IEEE Trans. Sust. Energy (2018).

[37] H. Zhu, L. Lu, J. Yao, S. Dai, and Y. Hu. 2018. Fault diagnosis approach for photovoltaic arrays based on unsupervised

sample clustering and probabilistic neural network model. Solar Energy (2018).

Received August 2020; revised March 2021; accepted April 2021

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 4, Article 40. Publication date: September 2021.


