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Abstract—Cloud platforms have popularized the Infrastructure-as-a-Service (IaaS) purchasing model, which enables users to rent

computing resources on demand to execute their jobs. However, buying fixed resources is still much cheaper than renting if their

resource utilization is high. Thus, to optimize cost, users must decide how many fixed resources to provision versus rent “on demand”

based on their workload. In this article, we introduce the concept of a waiting policy for cloud-enabled schedulers and show that the

optimal cost depends on it. The waiting policy explicitly controls how long jobs wait for resources, as jobs never need to wait, since

cloud platforms provide the illusion of infinite scalability. A waiting policy is the dual of a scheduling policy: while a scheduling policy

determines which jobs should run when fixed resources are available, a waiting policy determines which jobs should wait when fixed

resources are not available. We define multiple waiting policies and develop simple and general analytical models to reveal their

tradeoff between fixed resource provisioning, cost, and job waiting time. We evaluate the impact of different waiting policies on a real

year-long batch workload consisting of 14M jobs run on a 14.3k-core cluster. We show that a compound waiting policy, which forces

jobs with long running times or short waiting times to wait for fixed resources, offers the best tradeoff. The policy decreases both the

cost (by 5 percent) and mean job waiting time (by 7�) compared to the current cluster, and also decreases the cost (by 43 percent)

compared to renting on-demand resources for a modest increase in mean job waiting time (at 1.74 hours).

Index Terms—Cloud computing, job scheduling, batch scheduling, waiting policy

Ç

1 INTRODUCTION

CLOUD platforms have popularized the Infrastructure-as-
a-Service (IaaS) purchasing model by enabling users to

programmatically rent computing resources on demand, in
the form of virtual machines (VMs), to execute their jobs.1

Many large enterprises are now partially or completely
migrating their private computing infrastructure to cloud
platforms. For example, Netflix shut down its last private
data center in 2016 after entirely migrating its video stream-
ing service to Amazon Web Services (AWS) [13]. Cloud-
enabled infrastructure uses similar software systems as pri-
vate clusters to manage resources at large scales, typically
consisting of a centralized job scheduler, such as Slurm [4]
or Kubernetes [2]. Users submit jobs, with specified
resource requirements, to these schedulers, which either
allocate idle resources to execute them or force them to wait
for idle resources to become available. Since private clusters
manage a fixed number of computing resources typically
sized for peak demands, they often have low average utili-
zation (<30 percent), but may periodically experience large
bursts in job arrivals, e.g., due to deadlines, product

releases, or seasonal variations, that result in long job wait-
ing times.

As job schedulers migrate to the cloud, they have many
options for optimizing cost and reducing job waiting times. For
example, schedulers may provision cloud VMs on demand
to service jobs, requiring them to only pay for resources
when jobs need them. In this case, the cloud’s operating
costs are often much lower than the capital cost of an
under-utilized fixed-size cluster, since the latter must effec-
tively “pay” when resources are idle. In addition, since the
cloud provides the illusion of infinite scalability, jobs never
need to wait for resources, as schedulers can always acquire
cloud resources to service them immediately. Most schedu-
lers are now cloud-enabled and support such “auto-
scaling,” which acquires cloud VMs to service jobs, and
releases them when done [1], [3].

Importantly, however, buying fixed resources (or reserving
them for long periods) is significantly cheaper than renting
resources on demand if the fixed resources are highly utilized.
Cloud pricing models make this clear, as reserving a VM for
1-3 years costs 40-60 percent less per-hour than renting an
equivalent on-demand VM over the same period. For exam-
ple, reserving a m5.large VM from AWS, which includes
2 cores and 8 GB RAM, for 3 years currently costs $988,
while renting it on demand costs $0.096/hour or $2,522.88
over the same period. Of course, fixed resources are only
cost-effective if they are highly utilized: if jobs only execute
on the m5.large for less than a third of the time, the on-
demand option is cheaper (at a cost of $840.96). The cost
advantage of buying versus renting is even greater for spe-
cialized hardware with a recent analysis estimating that
purchasing a GPU-based deep learning cluster costs 90 per-
cent less than renting one on demand from AWS [14]. Thus,
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a mixed infrastructure that satisfies some baseload with
highly-utilized fixed resources, and satisfies load bursts
using on-demand resources can decrease cost. Notably,
hybrid clouds, which combine fixed private resources with
cloud bursting, use this approach [5], [21], [28], as do many
companies, which both buy reserved VMs and dynamically
rent on-demand VMs [22]. As we discuss in Section 7, phys-
ical infrastructure is also becoming networked and
programmatically driven, which has the potential to spread
the cloud model to other sectors, such as transportation and
energy, where schedulers may choose between buying fixed
resources or renting them to service various “jobs.”

To address the problem, in this paper, we introduce the
concept of a waiting policy for cloud-enabled schedulers,
and show that provisioning fixed resources to optimize cost
is dependent on it. The waiting policy explicitly controls
whether and how long jobs wait for fixed resources before
deciding to run them on on-demand resources. A waiting
policy is the dual of a scheduling policy: while a scheduling
policy determines which jobs run when fixed resources are
available, a waiting policy determines which jobs wait for
fixed resources when they are not available (rather than run
immediately on on-demand resources). While there has
been decades of work on job scheduling policies, we know
of no prior work that defines or analyzes waiting policies,
which are distinct from scheduling policies in that cloud-
enabled schedulers define both independently of each other.
For cloud-enabled schedulers, the waiting policy is just as
important as the scheduling policy, since it dictates the
tradeoff between job performance and cost. Waiting policies
also differ from auto-scaling policies currently used by
cloud-enabled schedulers, which immediately acquire
resources to satisfy queued jobs without any waiting [6].

Clearly, the longer jobs arewilling towait for fixed resour-
ces, the higher their utilization, and the lower their overall
cost. However, as we show, the relationship and tradeoff
between the number of fixed resources, the waiting policy,
and the optimal cost is non-intuitive. To better understand
these tradeoffs, we define multiple fundamental non-selective
and selective waiting policies and develop simple analytical
queueing models for them. Non-selective waiting policies
apply the same policy to all jobs, while selective waiting poli-
cies apply the policy to only selected jobs based on system or
job characteristics. While we focus on waiting policies for
cloud-enabled job schedulers, such as Slurm [4] and Kuber-
netes [2], our analytical models are general and thus may
also be applicable to schedulers for other resources, as we
discuss in Section 7. Aswe show,while these analytical mod-
els are not predictive, since their scheduling policy and
workload assumptions do not always hold in practice, they
enable users to better understand and reason about the
impact of waiting policies by understanding how a system’s
characteristics differ from the models’ assumptions. Our
hypothesis is that, by optimizing their waiting policy, cloud-
enabled schedulers can reduce job waiting times, while miti-
gating the impact on cost, or vice versa. In evaluating our
hypothesis, wemake the following contributions.

Introduce a Waiting Policy. We introduce the concept of a
waiting policy for cloud-enabled schedulers, and present
multiple fundamental non-selective and selective waiting
policies. Our non-selective waiting policies include All Jobs

Wait (AJW), No Jobs Wait (NJW), and All Jobs Wait Thresh-
old (AJW-T), while our selective policies include Short
Waits Wait (SWW) and Long Jobs Wait (LJW). Since waiting
policies are not mutually exclusive, we also present a com-
pound policy that concurrently applies AJW-T, SWW, and
LJW to gain the benefits of all three.

Waiting Policy Models and Analysis. We show how to ana-
lyze waiting policies for cloud-enabled schedulers in gen-
eral using a simple queuing model to understand their
tradeoff between fixed resource provisioning, cost, and job
waiting time. Our approach extends classic marginal analy-
sis by combining it with a number of different queuing
results and analyses to model cost under job waiting. We
then apply this approach to model, analyze, and empirically
validate each waiting policy above to demonstrate the
importance of explicitly defining a waiting policy to opti-
mize cost for cloud-enabled schedulers. Our modeling and
analysis also provides the necessary formal foundation for
conducting any future work on waiting policies for cloud-
enabled schedulers.

Modeling and Analysis Under Uncertainty. As with many
scheduling policies, our waiting policies require a priori
knowledge of job running times and waiting times, which is
not always available. Since predictions of job running times
and waiting times may be inaccurate, we extend our models
and analyses above to quantify the effect of inaccurate pre-
dictions on our waiting policies. Our analysis reveals an
interesting asymmetry in that our waiting policies are
highly sensitive to over-predictions of waiting time, but not
to under-predictions.

Implementation and Evaluation. We implement our waiting
policies in a trace-driven job simulator, and evaluate their
impact on a real year-long batch computing workload con-
sisting of 14 million (M) jobs run on a 14k-core cluster. The
results show that our compound policy offers the best trade-
off: it decreases the cost (by 5 percent) and mean job waiting
time (by 7�) compared to the current cluster using AJW,
and decreases the cost (by 43 percent) compared to only
renting on-demand resources for a modest increase in mean
job waiting time (at 1.74 hours).

2 BACKGROUND AND INTUITION

We provide background on cloud pricing of fixed and on-
demand VMs, and applying marginal analysis to optimize
cost.

Pricing Dynamics. We focus on applying waiting policies
using the pricing dynamics of existing cloud platforms. As
we discuss in Section 7, these pricing dynamics are both
fundamental and general, and thus may apply to other
resources where a similar buy versus rent option is avail-
able. We assume a cloud platform that offers two types of
resources: on-demand and fixed. Users may acquire and
release on-demand resources any time, and pay only for the
time they use them without any commitment. In contrast,
users must commit to paying for fixed resources over a long
period, e.g., one or more years. Importantly, however, fixed
resources are cheaper than on-demand resources if they are
highly utilized.

Table 1 shows the pricing dynamics of an on-demand
and fixed (3-year reserved) m5.large cloud VM on AWS
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in the U.S. East region. The table includes the raw price per
unit time, the effective price of utilized resources, 3-year
cost, and normalized price, i.e., the effective price relative to
the raw on-demand price, for each scenario. As mentioned
in Section 1, the on-demand VM’s 3-year cost is much
higher than the fixed VM’s cost at 100 percent utilization.
However, the fixed VM’s cost is constant and independent
of its utilization due to the long-term commitment, while
the on-demand VM’s cost changes with utilization, since
users release it when not in use. Here, utilization simply
denotes the fraction of non-idle periods over time. Since the
fixed VM’s resources are wasted during idle periods, its
effective price for utilized resources increases with decreasing
utilization. In this case, if the fixed VM is utilized > 40 per-
cent of the time, its effective price and 3-year cost are less
than the on-demand VM, thereby making it the cheaper
option. We call this the break even point.

The cost dynamics above are fundamental to the eco-
nomics of any platform that rents resources, since the plat-
form must always recoup its own costs for buying fixed
resources, in addition to any operating costs and profit, by
renting them to users. By serving a large pool of users with
different resource requirements, these platforms are able to
operate their fixed resources at a much higher resource utili-
zation than any single user, which results in a much lower
effective price. Volume discounts and higher operational
efficiency at large scales, i.e., “economies of scale,” can also
contribute to lowering these platforms’ effective price for
fixed resources. Even so, as our example illustrates, highly
utilized fixed resources are still much cheaper, since they
eliminate the platform’s primary cost advantage.

Marginal Analysis. In economics, marginal analysis exam-
ines the additional benefits of some activity compared to
the additional costs incurred by that activity. Determining
the optimal mix of fixed and on-demand resources to exe-
cute a workload on a cloud platform to minimize cost is a
classic marginal analysis problem [25]. Given a workload
and some fixed resources capable of servicing a fraction of
it, the marginal analysis problem is to determine whether
the additional benefit of acquiring one more fixed resource
to serve (a portion of) the remaining workload outweighs
its cost, i.e., the savings from renting an on-demand
resource to service the same portion.

Fig. 1 illustrates marginal analysis pictorially for an
example workload where time is on the x-axis and resource

demand is on the y-axis. We assume the fixed and on-
demand resources have the same prices as in Table 1. To
determine the optimal mix of fixed and on-demand resour-
ces using marginal analysis, we simply add fixed resources,
one at a time, to satisfy each unit of stacked resource
demand in order (starting from 0 on the y-axis) up to the
point where the utilization of the fixed resource equals our
break even point on the y-axis, which is 40 percent (in dark
grey). When the instantaneous demand exceeds the fixed
resource capacity at the horizontal line (in light grey),
dynamically acquiring and releasing on-demand resources
to satisfy the remaining workload is cheaper.

More formally, let pf and po denote the price per unit
time for a fixed resource (at 100 percent utilization) and on-
demand resource, respectively, let d denote the discount
factor for a fixed resource, such that pf ¼ d� po and 0 � d �
1, and let T denote the workload’s duration. The cost of
adding one more fixed resource s over the workload’s dura-
tion T is pf � T . Now suppose this sth resource operates at
utilization rs when servicing the remaining workload. Since
the scheduler can acquire and release on-demand resources
at any time, the cost of servicing the remaining workload
using an on-demand resource is rs � T � po, as the sched-
uler can acquire the on-demand resource in rs � T time
slots and release it when idle. Thus, using a fixed resource
is only cheaper if pf � T < rs � T � po. By substituting
pf ¼ d� po, we observe that only when d < rs, or the dis-
count factor is less than the utilization of the last fixed
resource we added, is acquiring an additional fixed resource
cheaper than using on-demand resources. Similarly, the cost
of provisioning an additional fixed or on-demand resource
is equal when rs ¼ d, or the discount factor equals the utili-
zation of the last fixed resource. Beyond this break even
point, there is no marginal cost savings from acquiring
more fixed resources.

The marginal analysis problem above is straightforward
to solve in the context of a traditional queuing model using
classic results by Erlang, assuming arriving jobs never wait
for resources [19], [31], [35]. Variants of this classic problem
have been addressed in prior work both generally, and in
the context of cloud computing, which we discuss in
Section 8.

Marginal Analysis Under Waiting. The classic marginal
analysis above implicitly assumes jobs never wait for resour-
ces, and always immediately execute on either a fixed or on-
demand resource. A key insight of our work is that cloud-
enabled schedulers can explicitly control whether (and how
long) jobs wait for fixed resources if they are busy, and that
this waiting policy affects the optimal provisioning of fixed

TABLE 1
Raw Price, Effective Price Per Unit Time of Utilized Resources,
3-Year Cost, and Normalized Price for Different Utilizations of a

Fixed Reserved and On-Demand VM From AWS

Purchasing Option Raw Effective 3-year Normalized

(utilization%) Price Price Cost Price

On-demand (100%) 9.6¢/hr 9.6¢/hr $2523 � 1:0

On-demand (60%) 9.6¢/hr 9.6¢/hr $1514 � 1:0

On-demand (40%) 9.6¢/hr 9.6¢/hr $1009 �1.0

Fixed Reserved (100%) 3.8¢/hr 3.8¢/hr $988 � 0:4

Fixed Reserved (60%) 3.8¢/hr 6.3¢/hr $988 � 0:7

Fixed Reserved (40%) 3.8¢/hr 9.5¢/hr $988 �1.0

Fig. 1. Illustration of utilization for each unit of stacked resource demand
and the break even point at 40 percent utilization.
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resources that minimizes cost. In general, the longer the
permissible waiting time, the higher the fixed resource
utilization, and the lower the overall cost. As we show,
cloud-enabled schedulers can implement a wide variety
of waiting policies that offer different tradeoffs between
fixed resource provisioning, cost, and job waiting time.
Despite the importance of the waiting policy in optimiz-
ing cost when using cloud platforms, we know of no
work that explicitly defines and analyzes such waiting
policies for cloud-enabled schedulers by applying mar-
ginal analysis.

3 NON-SELECTIVE WAITING POLICIES

We develop a simple queuing model for cloud-enabled
schedulers to understand the relationship between the
waiting policy, fixed resource provisioning, job waiting
time, and cost. While our implementation and evaluation
in Sections 5 and 6 focus on cloud platforms, our queu-
ing model and analysis are general and may apply to
similar schedulers for other resources, as we discuss in
Section 7. We first analyze basic non-selective waiting
policies—All Jobs Wait (AJW), No Jobs Wait (NJW), and
All Jobs Wait Threshold (AJW-T)—which apply the same
policy to all jobs. In Section 4, we analyze selective wait-
ing policies that only force selected jobs to wait based on
their characteristics.

Our analysis extends a M=M=s=1 queuing model using
s fixed resources with first-come-first-serve (FCFS) schedul-
ing, mean job arrival rate �, and mean job service time 1=m,
where job arrivals follow a Poisson process, job service
times are independent and identically distributed (i.i.d.).
and exponentially distributed, and each resource executes
one job at a time. The offered load is a=�=m, and the offered
load (and mean utilization) per fixed resource is r= a=s=
�=ðs� mÞ. Our analysis only applies in steady-state. For ref-
erence, Table 2 lists each variable our analysis uses. We use
a standard queuing model because it permits a closed-form
analysis to understand the basic tradeoffs in designing wait-
ing policies. We then show how better understanding these
tradeoffs can enable users to reason about the effects of
waiting policies on systems that do not conform to this
model, e.g., by having different scheduling policy or work-
load characteristics.

3.1 All Jobs Wait

Model Analysis. All Jobs Wait (AJW) is a baseline policy that
requires all jobs to wait for fixed resources, and never rents
on-demand resources. We present it as a foundation for our
subsequent analysis. AJW’s analysis is equivalent to that of
an M=M=s=1 queue. The effective price P for each fixed
resource is simply a function of the mean resource utiliza-
tion r and fixed resource price pf at full utilization, as
shown below.

P ¼ pf=r: (1)

Thus, as mean utilization r increases, the effective price
decreases up to 100 percent utilization. Of course, as utiliza-
tion increases, the mean waiting time w in the queue also
increases. The mean waiting time w for fixed resources
under AJW is a well-known function, shown below, of s, �,

and m, where Cðs; aÞ ¼ ½ðs� asÞ=ðs!� ðs� aÞÞ�=½Ps�1
i¼0 a

i=i!þ
ðs� asÞ=ðs!� ðs� aÞÞ� is Erlang’s delay (or C) formula.

w ¼ Cðs; aÞ
s� m� �

: (2)

Empirical Validation. We empirically validate the effective price P
and mean waiting time w for all models we present in Sections 3 and
4 for the same baseline example. In our baseline example, we set
� ¼ 0:2 (or 1 job every 5 seconds on average), m ¼ 0:002 (or an
average job service time of 500 seconds), po ¼ 9:6¢/hour, and
pf ¼ 3:84¢/hour. Thus, in this case, the discount factor d for
fixed resources at 100 percent utilization is pf=po ¼ 0:4. As in
our example in Section 2, we set po and pf based on the on-
demand and 3-year reserved VMprices in AWS, and set � and
m such that the mean utilization r of the fixed resources is 100
percent when s=100 resources. We plot both the continuous
function from our model, as well as average empirical values
from 20 trials of our job simulator from Section 5. Each trial
simulates themodel on a synthetically generated job tracewith
2 million jobs using exponentially distributed inter-arrival and
service times based on the baseline parameters, as well as any
model-specific parameters. To capture steady states, we do not
include the first and last 10 percent of jobs when computing P
and w. All graphs include error bars representing the maxi-
mum and minimum across all trials, although, with 2 million
jobs, there is almost no deviation from the average on each trial.

For AJW, Fig. 2 plots the effective price P (left y-axis),
obtained from our model and from simulations, as a func-
tion of the fixed resources s. Here, as in all subsequent graphs,
we normalize the effective price P by the price of

TABLE 2
Listing of Symbol, Description, and Units for Each Variable we

Use in Our Analysis Roughly in Order of Introduction

3084 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on October 05,2024 at 14:07:18 UTC from IEEE Xplore.  Restrictions apply. 



on-demand resources po. Thus, the left y-axis represents how
much using fixed resources lowers or raises the price relative
to using on-demand resources; smaller numbers (lower prices)
are better. The minimum value on the left y-axis is P ¼ pf ¼
0:4, since this represents the lowest possible price (using only
fixed resources at 100 percent utilization). The right y-axis
shows themeanwaiting timew for fixed resources.

Fig. 2 shows that our model’s predictions closely match
the empirical results, both for the normalized price and the
mean waiting time. Also, as expected, the graph shows that
as s increases the effective price P increases linearly due to
the decrease in mean utilization r. In contrast, the mean
waiting time decreases super-linearly with increasing s.
Thus, AJW offers a risky tradeoff between w and P , since
provisioning fixed resources for high utilization, i.e., a low
s, to reduce the price may cause high waiting times. As a
result, AJW encourages over-provisioning to ensure waiting
times near 0 that are outside the region where they increase
super-linearly.

The effective price P equals the on-demand price po
when the mean utilization of fixed resources r equals the
discount factor d ¼ 0:4, which occurs at s= 250 (not shown).
Thus, provisioning any fixed resources s < 250 is cheaper
than solely using on-demand resources. Reducing s to 120
still yields a waiting time w � 0 for an effective price P that
is 52 percent lower than s=250 and only 20 percent higher
than s=100 where w ! 1.

Key Point. Since waiting time increases super-linearly as utili-
zation r ! 100%, AJW encourages over-provisioning to ensure a
utilization below 100 percent with waiting times near 0.

3.2 No Jobs Wait

Model Analysis. The No Jobs Wait (NJW) waiting policy is
similar to existing auto-scaling policies for cloud-enabled
schedulers that execute jobs on fixed resources when avail-
able, and dynamically acquire on-demand resources to exe-
cute jobs when all fixed resources are busy. Recall from
Section 2 that, given a workload, there is an optimal number
of fixed resources s for NJW that minimizes cost, and this
value occurs when the sth resource has a utilization equal to
the fixed resource’s discount factor d. Thus, to optimize s
under NJW, we need an expression for the sth resource’s uti-
lization, denoted as rs.

We find rs using marginal analysis by applying Erlang’s
loss (or B) formula, which assumes a M=M=s=0 queue.
Since the queue size is zero, any job that arrives and
observes all resources as busy must exit the system. Erlang’s
loss formula gives the blocking probability that an arriving
job exits the system, or equivalently that there are s jobs in
the system and all resources are busy. To compute the utili-
zation of the sth resource, we first compute the difference
between the blocking probability when using s� 1 and
when using s resources. This difference represents the per-
centage of jobs an additional resource serves. Multiplying
this percentage by the offered load a ¼ �=m gives the mean
utilization of the sth resource rs, as shown below, where
Bðs; aÞ= ðas=s!Þ=ðPs

i¼0ðai=i!ÞÞ is Erlang’s loss (or B) formula.

rs ¼ a� ½Bðs� 1; aÞ �Bðs; aÞ�: (3)

Under a No Jobs Wait (NJW) waiting policy, rather than
actually exit the system, the scheduler acquires on-demand
resources to immediately service blocking jobs without wait-
ing. To determine the optimal number of fixed resources s
that minimizes cost, we set the discount factor d equal to rs in
Equation (3) and solve for s. Since Erlang’s loss formula
includes a factorial and summation, there is no closed-form
expression for s, requiring us to solve for it numerically. Since
rs is monotonically decreasing as s increases, we can use a
binary search to determine the optimal s. After solving for s,
we compute the minimum effective price P per resource per
unit time for the s fixed resources and additional on-demand
resources necessary to satisfy the offered load.

P ¼ ð1� rÞ � pf
rf

þ r� po: (4)

Here, we use r to represent the fraction of the workload
that executes on on-demand resources. The first additive
term normalizes the price of the s fixed resources pf at 100
percent utilization by their mean utilization rf , which is ð1�
rÞ � r, since the mean arrival rate to the s fixed resources is
only ð1� rÞ � �. We then multiply this normalized price by
the fraction of load ð1� rÞ serviced at this price. The second
additive term simply multiplies the price of on-demand
resources po by the remaining fraction of the workload r. For
NJW, r=Bðs; aÞ, as this represents the probability that a job
blocks and then runs on on-demand resources. Since jobs
block uniformly at random, the mean service time of block-
ing and non-blocking jobs both equal the mean service time
1=m. As a result, we need not weight each additive term in
Equation (4) by its fraction of themean service time.

The total cost C (in dollars) to execute a workload over
time T , i.e., the fixed resources’ lifetime, is then shown below.

C ¼ P � 1

m

� �
� ð�T Þ ¼ s� pf � T þ r� �

m
� po � T:

(5)

The total cost C is the product of the effective price per
unit time P , the mean service time per job (1/m), and the
total number of jobs, which in-turn is the product of the job
arrival rate � and the total time T . We can also represent the
total cost in a different, but equivalent, way on the right

Fig. 2. Normalized price P (left y-axis) and mean wait time w (right
y-axis) as a function of fixed resources s under AJW. Mean wait time
w ! 1 as fixed resources s ! 100, and mean wait time w ! 0 as fixed
resources s ! 1.
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side by expanding P using Equation (4). Here, the first addi-
tive term is the cost for the s fixed resources over time T ,
and the second term is the cost of renting on-demand
resources. The first term is independent of the offered load,
since users must pay for the s fixed resources regardless of
their utilization. Of course, Equation (5) for C only applies
to the system in steady state over the interval T . As noted
earlier, our simulations capture steady state by not consid-
ering the first and last 10 percent of jobs when computing
C, P , or w.

Empirical Validation. We empirically validate NJW using
the same baseline example from Section 3.1. Fig. 3 shows
the effective price P (left y-axis) as a function of fixed
resources s under NJW, where we again normalize P by the
price of on-demand resources po. The right y-axis shows the
mean utilization of the sth resource rs, as the waiting time w
is always zero under NJW. As expected, the graph shows
the model closely matches the empirical results. As s
increases, the effective price decreases to the optimal s=108
where rs equals the 0.4 discount factor, after which, the
effective price increases. Plugging the optimal s value and
our baseline parameters into Equation (3) verifies that
rs ¼ 0:4.

At the optimal s= 108, NJW has an effective price P =
0:467� 0:096= $0.044832/hour, while AJW’s price is �7:5%
less at P = 0:432� 0:096= $0.041472/hour. However, under
NJW, jobs never incur waiting time, while AJW incurs a
mean waiting time of 20s, with some jobs waiting much lon-
ger. Thus, for 7.5 percent higher cost, NJW guarantees jobs
never wait. In this case, r=0.035, i.e., 3.5 percent of jobs run
on on-demand resources, which results in a minimum cost
(in dollars) over a 3-year period of C = $117,818. By contrast,
solely using on-demand resources costs 100(0.096)(26280)
=$252,288, which is over twice as expensive as the optimal
cost under NJW.

Key Point. While NJW’s cost is higher than AJW’s for the same
fixed resources, it guarantees no waiting time. NJW encourages
optimal provisioning, since its cost increases as fixed resource pro-
visioning deviates from the optimal.

3.3 All Jobs Wait - Threshold

Model Analysis. AJW and NJW define two extremes: AJW
yields a low price but with a potentially high waiting time,

while NJW yields a higher price but zero waiting time. The
All Jobs Wait-Threshold (AJW-T) waiting policy defines a
continuous tradeoff between these two extremes by requir-
ing all jobs to wait up to some threshold time b, at which
point the scheduler acquires an on-demand resource to ser-
vice them. At b= 0, AJW-T is equivalent to NJW, and as b !
1, AJW-T approaches AJW. To model AJW-T, we must
derive r from Equation (4), or the fraction of jobs that run
on on-demand resources after waiting b time. Given r, we
can compute the effective price P from Equation (4) as
before. In queuing literature, AJW-T is equivalent to a queu-
ing model with reneging jobs that exit the queue after wait-
ing a threshold period. The reneging probability r is given
by the following lemma, which follows from an analysis by
Liu and Kulkarni [27].

Lemma 3.1. The reneging probability r in a M=M=s=1 system
is computed as follows.

r ¼ a � b � e�d�b

s � m ; (6)

where

d ¼ ðsm� �Þ (7)

b ¼ smp

1� p
(8)

p ¼ ð�=mÞs

s!
Ps

i¼0
ð�=mÞi

i!

(9)

a ¼ ½bð1
d
� ed�b � �

d�smÞ þ 1��1
r 6¼ 1

�
�þb�ð��bþ1Þ r ¼ 1

(
: (10)

When expanded, r is solely a function of s, b, �, and m. As
before, we need an expression for the mean utilization of the
sth resource, as in Equation (3), to solve for the optimal s that
minimizes cost. However, in this case, we replace Erlang’s B
formula with r above when using s� 1 and s resources, as
shown below, since r represents the reneging probability
under AJW-T, which is akin to the blocking probability
under AJW. We can again solve for the optimal s that mini-
mizes price numerically using a binary search, as rs is still
monotonically decreasing as s increases, where a ¼ �=m.

rs ¼ a� ½rs�1 � rs�: (11)

After determining the optimal s and r for a given thresh-
old waiting time b, we compute the mean waiting time of
jobs. Liu and Kulkarni give the mean waiting time under
reneging as follows [27]. The first additive term represents
the mean waiting time for the jobs that execute on fixed
resources, while the second additive term represents the
mean waiting time for jobs that execute on on-demand
resources, which is simply r� b as they all wait the maxi-
mum time b.

w ¼ ð1� rÞ � ða�bð1�dbe�d�b�e�d�bÞ
ð1�rÞ�d2

Þ þ r� b r 6¼ 1

ð1� rÞ � ða�b�b2

ð1�rÞ�2Þ þ r� b r ¼ 1

8<
: :

(12)

Fig. 3. Normalized price P (left y-axis) and mean utilization of the sth

resource rs (right y-axis) as a function of fixed resources s under NJW.
Minimum price occurs when the fixed resources’ discount factor d=rs.
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Empirical Validation. We again validate our model using our
baseline parameters. Fig. 4 shows the effective price P as a
function of fixed resources s under AJW-T for different
threshold maximum waiting times b, as well as the price
under AJW and NJW. Once again, the model’s predictions
closely match the empirical results. As expected, as b
increases, the price approaches AJW, and as it decrease the
price approaches NJW. The graph also shows that as b
increases, the optimal fixed resources s that minimizes price
decreases. Similarly, Fig. 5 shows the mean waiting time w
on the y-axis as a function of the fixed resources s. Here, as b
increases, the mean waiting time increases more sharply as
s ! 100. Thus, unlike AJW and NJW, AJW-T is configura-
ble, enabling users to set their tradeoff between price and
waiting time.

Key Point. AJW-T offers a configurable tradeoff between price
and waiting time by enabling users to set the maximum waiting
time threshold b, unlike NJW, which offers no tradeoff, and AJW,
which offers a risky tradeoff.

4 SELECTIVE WAITING POLICIES

Unlike non-selective waiting policies, selective waiting poli-
cies do not apply to all jobs, but only to selected jobs based on
systemor job characteristics.Wedefine and analyze two selec-
tive policies: Short Waits Wait (SWW) and Long Jobs Wait
(LJW). Since waiting policies are not mutually exclusive, we
also analyze a compoundwaiting policy that combines SWW,
LJW, and the thresholdwaiting time fromAJW-T.

4.1 Short Waits Wait

Model Analysis. Unlike AJW-T where jobs wait up to a
threshold value before they are scheduled on on-demand
resources, in the Short Waits Wait (SWW) waiting policy,
incoming jobs estimate their waiting time upon arrival
(based on the jobs running and ahead of it in the queue) and
only wait if the estimated wait time is short, i.e., less than a
threshold value. If the estimated wait time is long, i.e,
exceeds the threshold, then they immediately run on on-
demand resources without waiting. In queuing literature,
this behavior is equivalent to a queuing system with balking
jobs, which immediately exit the system if the waiting time
will exceed a maximum threshold value denoted by b.
Importantly, as prior work shows, the same set of jobs that
renege under AJW-T, and in our case run on on-demand
resources, will also balk under SWW [27]. Thus, the fraction
of jobs r that run on on-demand resources under SWW is
the same as under AJW-T (from Lemma 3.1), and thus the
effective price for resources is the same under AJW-T and
SWW for the same b.

The only change with SWW relative to AJW-T is the
mean waiting time w, since under SWW jobs exit the system
immediately and run on on-demand resources if their wait-
ing time would exceed the threshold waiting time b. In this
case, the mean waiting time w shown below is the same as
in Equation (12) except that we remove the r� b term, since
the r fraction of jobs that run on on-demand resources incur
no waiting time rather than incurring b waiting time, as in
AJW-T.

w ¼ ð1� rÞ � ða�bð1�dbe�d�b�e�d�bÞ
ð1�rÞ�d2

Þ r 6¼ 1

ð1� rÞ � ða�b�b2

ð1�rÞ�2Þ r ¼ 1

8<
: : (13)

Empirical Validation. Fig. 6 plots the mean waiting time w for
SWW and AJW-T as a function of the fixed resources s, and
a threshold waiting time b= 900s = 15m. The mean waiting
time for SWW approaches zero as s decreases (and load
increases) rather than b for AJW-T, as increasingly more
jobs exit the system without waiting and run on on-demand
resources. Note that SWW’s mean waiting time reaches its
maximum at s= 93, and is always less than that of AJW-T.

Key Point. SWW with accurate predictions of job waiting time
is strictly better than AJW-T for the same threshold b, yielding the
same price at a lower mean waiting time.

Fig. 4. Normalized price P as a function of fixed resources s under
AJW-T for different threshold waiting times b.

Fig. 5. Mean waiting time w as a function of fixed resources s under
AJW-T for different threshold waiting times b.

Fig. 6. Mean waiting time as a function of fixed resources under SWW
and AJW-Twhere b=900s=15m.
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4.1.1 Prediction Accuracy

The SWW analysis above assumes that arriving jobs are able
to perfectly predict their waiting time w. Doing so requires
perfectly predicting the running time of every job currently
running and ahead of them in the queue. There is significant
prior work on predicting queue waiting times using statisti-
cal analyses and machine learning classifiers, which we dis-
cuss in Section 8. This prior work demonstrates that
accurately predicting queue waiting times can be challeng-
ing. As a result, we also model and analyze SWW under
inaccurate predictions of job waiting time. Our analysis pro-
vides a basis for understanding how accurate machine
learning (ML) classifiers and other methods that predict job
waiting time developed in prior work must be to achieve
specific job waiting time or cost targets. Importantly, the
goal of our work is not to develop a better waiting time pre-
dictor, but to understand both how inaccurate predictions
can affect waiting policies, and how to reason about the
effectiveness of prediction methods.

Given a threshold waiting time b, there are two mispre-
diction cases to consider: the scheduler either i) over-pre-
dicts a job’s waiting time and thus runs it on on-demand
resources when it should have waited for fixed resources,
or ii) under-predicts a job’s waiting time and thus forces it
to wait for fixed resources when it should have run immedi-
ately on on-demand resources. We consider each case sepa-
rately based on the fraction of jobs fover and funder that over-
and under-predict their waiting time, respectively. Note
that our analyses for over- and under-predicting waiting
time can be applied independently to the same model. Of
course, by definition, the set of jobs in fover and funder must
be disjoint and fover þ funder � 1.

Over-Predicting Waiting Time. As the fraction of jobs that
over-predict waiting time approaches 100 percent, SWW
approaches the behavior of using all on-demand resources
(plus the cost of the fixed resources), as jobs always immedi-
ately exit the system (due to their high predicted waiting
time) and run on on-demand resources. For simplicity, our
analysis here is not work-conserving, such that over-predic-
tions redirect jobs to on-demand resources even when fixed
resources are available. We can model over-predictions by
simply reducing the arrival rate � of jobs to the s fixed
resources by fover, since this fraction of jobs always exit the
system due to over-prediction and run on on-demand

resources. Thus, the effective arrival rate becomes ð1�
foverÞ � �. We can then solve for the optimal s as before
using Equation (11) but substituting this new effective
arrival rate for �. We must also account for the increased
fover fraction of jobs that run on on-demand resources when
computing the effective price P . To do so, we adjust Equa-
tion (4) as shown below.

P ¼ ð1� rÞ � pf
rf

þ ð1� foverÞ � r� po þ fover � po:

(14)

The first term is the same as in Equation (4). The second
term represents the fraction of offered load that runs on on-
demand resources after correct predictions, while the third
term represents the fraction that runs on on-demand resour-
ces after incorrect over-predictions. We similarly adjust the
waiting time in Equation (13) by substituting ð1� rÞ with
ð1� foverÞ � ð1� rÞ as fewer jobs wait for fixed resources.

Fig. 7 shows the effective price P (normalized by the on-
demand price as before) on the y-axis as a function of s. In
this case, we use the same baseline parameters as before,
while setting b= 900, and plot different lines for different
values of fover, as well as NJW. As the graph shows, as fover
increases to one, the optimal value of s changes, and
approaches that under NJW. Note that the price of a work-
conserving variant would be bounded by NJW as s
increases, rather than exceeding it, since it would utilize
any idle fixed resources. However, the behavior would be
the same as in the graph as s decreases, since there are fewer
idle fixed resources. Similarly, Fig. 8 shows the mean wait-
ing time w as a function of s. As expected, as fover increases,
the mean waiting time decreases (as fewer jobs wait). As
before, we include both continuous functions from our
model and empirical results from our job simulator.

Key Point. SWW is sensitive to over-predictions, as 3-5 per-
cent over-predictions significantly alters the price and mean wait-
ing time.

Under-Predicting Waiting Time. As the fraction of jobs
funder that under-predict their waiting time approaches 100
percent, SWW approaches the behavior of AJW-T, since
jobs always wait for fixed resources up to threshold b before
running on on-demand resources. We model this case by
using the fact that the set of reneging jobs under AJW-T and
balking jobs under SWW are the same [27], and thus do not

Fig. 7. Price P as a function of fixed resources s under SWW for different
over-prediction errors fover and NJW.

Fig. 8. Mean waiting time as a function of s under SWW for different
over-prediction errors fover and NJW.
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affect the waiting time of other jobs. The funder fraction of
jobs that should balk and run immediately on on-demand
resources due to a long wait time, but instead wait due to
an under-prediction, will always eventually renege and run
on on-demand resources. Since these jobs never run on fixed
resources, they do not affect the waiting times of the jobs
that do.

The effective price under SWWwith under-predictions is
the same as that with AJW-T and SWW with perfect predic-
tions, as the same set of jobs run on on-demand resources in
all cases. The only difference is the job waiting times. To
compute the waiting time in this case, we simply need to
substitute ð1� funderÞ � r for r in Equation (12) for the wait-
ing time under AJW-T to account for the fraction of jobs
funder that incur a waiting time of b due to the under-predic-
tion. Fig. 9 shows the mean waiting time w as a function of s
using our baseline parameters for different values of funder,
as well as for AJW-T with b= 900s. As expected, as funder
increases, the mean waiting time increases until it matches
that of AJW-T. Notably, SWW is much less sensitive to
under-predictions, since they do not affect price and only
affect the mean waiting time when fixed resources are
highly under-provisioned. Further, even when under-provi-
sioned, the under-prediction rate must be high, at >50% in
the graph, to cause a significant increase in mean wait time.

Key Point. SWW is not highly sensitive to under-predictions,
as they do not affect the effective price and only affect the mean
waiting time when fixed resources are under-provisioned.

Our results are important in assessing and contextual-
izing the accuracy of new and existing methods for predict-
ing queue waiting times. Specifically, for cloud-enabled
schedulers, these prediction techniques should focus on
minimizing over-predictions, and they should be evaluated
separately for over- and under-predictions.

4.2 Long Jobs Wait

Model Analysis. Long Jobs Wait’s (LJW) intuition is that lon-
ger running jobs should be willing to wait longer for fixed
resources, since longer waiting times are a smaller percent-
age of their overall running time compared to shorter jobs.
For LJW, we introduce a running time threshold t such that
jobs shorter than t run immediately on on-demand resour-
ces, while others wait for fixed resources. For simplicity,
our LJW policy is not work-conserving in that it runs short
jobs on on-demand resources even if fixed resources are

available. This non-work-conserving variant will behave
similarly to a work-conserving one in the optimal case
when fixed resources are not over-provisioned (and thus
rarely idle). For LJW, we separate the analysis for short jobs
and long jobs. As shown below, the effective price P is the
weighted average of the price to run short and long jobs. As
before, r represents the fraction of jobs that run on on-
demand resources, while Pshort and Plong represent the price
to run short and long jobs, and mshort and mlong represent the
mean service rate of short and long jobs.

P ¼ ð1� rÞ � m

mlong

� Plong þ r� m

mshort

� Pshort: (15)

Thus, first and second additive terms represent the relative
cost to execute long and short jobs, respectively, based on their
fraction of the total jobs, their proportion of the service time,
and their price. Note that, mlong > m > mshort for any t > 0.
Similarly, the mean waiting time w is the weighted average of
the waiting time to run short and long jobs. Since, by defini-
tion, short jobs do notwait,w is only dependent on the fraction
of long jobs and theirmeanwaiting time.

w ¼ ð1� rÞ � wlong: (16)

Short Jobs. All short jobs (with running times < t) run on
on-demand resources at price po without any waiting time.
Thus, Pshort = po, while r is the fraction of jobs with running
times less than t, which is equivalent to the CDF of the expo-
nential distribution for service times at x= t, as shown
below.

r ¼ 1� e�mt: (17)

Long Jobs. Since long jobs always wait for fixed resources,
the policy is similar to AJW in Section 3.1 but applied to
long jobs. The mean arrival rate for long jobs �long is the
product of the overall job arrival rate � and the fraction of
long jobs ð1� rÞ.

�long ¼ �� ð1� rÞ ¼ �� e�mt: (18)

Similarly, we compute the mean service rate mlong for
long jobs using its service time PDF fðx;m), as below. The
PDF for long jobs is an exponential distribution shifted by t
units.

fðx;mÞ ¼ me�mðx�tÞ; x 	 t: (19)

We find the expected value of the long jobs service time
PDF to derive its mean service time 1

mlong
by integrating from

x ¼ t ! 1.

1

mlong

¼
Z 1

t

xme�mðx�tÞdx ¼ tþ 1

m
: (20)

Note that we can derive mshort from mlong, r, and m, since
the mean service time of the original distribution 1=m is the
weighted average of the mean service time of short jobs
1=mshort and long jobs 1=mlong. Thus, we compute mshort by
simply solving the expression below.

Fig. 9. Mean waiting time as a function of fixed resources s under SWW
for different under prediction rates funder.
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1

m
¼ r� 1

mshort

þ ð1� rÞ � 1

mlong

: (21)

The effective price Plong of running long jobs on fixed
resources is simply the price of fixed resources pf at full uti-
lization divided by the actual utilization rlong, where rlong ¼
�long=ðs� mlongÞ.

Plong ¼ pf
rf

¼ pf � s� mlong

�long
: (22)

Importantly, however, the distribution of jobs with ser-
vice times greater than t is not exponentially distributed. As
a result, we cannot apply the same model as for AJW to com-
pute the waiting time. Instead, we use the well-known
approximation below for the waiting time of an M/G/s
queue, where CV is the distribution’s coefficient of varia-
tion, i.e., the standard deviation divided by the mean. In
this case, the standard deviation of the long jobs’ service
time distribution is 1=m, and the mean is 1=mlong, so
CV =mlong=m.

w � CV 2 þ 1

2
� Cðs; aÞ
s� mlong � �long

: (23)

Empirical Validation. Fig. 10 shows the normalized price (left
y-axis) and waiting time (right y-axis) under LJW as a func-
tion of t for s=101, as well as AJW and NJW, using our
baseline parameters. As before, the graph shows that the
empirical values closely match the model’s waiting time
approximation above. The graph shows that as t increases
the normalized price increases, as fewer jobs wait for
resources. However, LJW also significantly decreases the
mean waiting time relative to AJW as t increases, since the
exponential service time distribution is weighted towards
short jobs, which experience no waiting time under LJW. In
addition, since long jobs still comprise a high fraction of the
overall service time (and thus cost), the effective price under
LJW, especially for small values of t, increases at a much
lower rate than the waiting time decreases. For example, at
a threshold t= 180, the mean wait time is near 0 under LJW
compared to a mean waiting time of 450s under AJW, for a
normalized price that is only �10% higher, but slightly
lower than NJW.

By immediately running short jobs, LJW acts as the dual
of shortest job first scheduling that minimizes waiting time,
and is thus beneficial when fixed resources are under-
provisioned.

Key Point. LJW offers a nice tradeoff: as t increases, price
increases modestly, while waiting time decreases significantly.

4.2.1 Prediction Accuracy

Our LJW analysis above assumes that arriving jobs perfectly
predict their running time, which may not always be possi-
ble. As with predictions of queue waiting time, there is sig-
nificant prior work on predicting job running time, which
we discuss in Section 8, since it is an important input for
many common scheduling policies, such as SJF. As in 4.1.1,
our analysis provides a basis for contextualizing this prior
work, and understanding how inaccuracy can affect waiting
policies. Since an imperfect prediction analysis for LJW is
more challenging than for SWW, we empirically quantify
the effect of inaccurate predictions of job running time in
our model. At a high level, similar to SWW’s analysis, as
fover—the fraction of short jobs that are predicted to be long
(with running times > t)—approaches one, LJW
approaches the behavior of AJW, since all jobs wait. In con-
trast, as funder—the fraction of long jobs that are predicted to
be short—approaches one, LJW approaches using all on-
demand resources (plus the cost of fixed resources).

To understand how sensitive LJW is to over- and under-
predictions of job running time, we plot the normalized
price and mean waiting time as a function of funder and fover
for s= 101 and t= 180. We only plot empirical results from
our job simulator, since we have no analytical model.
Fig. 11a shows that as the over-prediction rate increases, the
effective price decreases, but, since LJW’s price in this case
is already near the optimal price pf , the decrease is minimal.
In contrast, as the under-prediction rate increases, the effec-
tive price increases significantly. Fig. 11b shows the oppo-
site effect: as the over-prediction rate increases, the mean
waiting time increases significantly, while as the under-pre-
diction rate increases the mean waiting time decreases,
although since LJW’s mean wait time is already near zero,
the decrease is not significant.

To clarify the tradeoff between over- and under-predic-
tion, we define a new metric, called the opportunity cost of
waiting, which values a job’s waiting time equal to its run-
ning time. The mean opportunity cost P � w is in dollars.
Since lower values of P andw are better, a lower opportunity
cost is better. Fig. 11c shows the opportunity cost of LJW as a
function of the rate of over- and under-prediction. The graph
shows that LJW is more robust to under-prediction, since a
high under-prediction error rate causes more jobs to run on
on-demand resources.While this increases the price, it drops
the waiting time (and thus opportunity cost) to zero once the
error rate exceeds 10 percent. In contrast, over-predictions
decrease the price only linearly, as shown in (a), but increases
the waiting time super-linearly, as shown in (b). Over-pre-
dictions cause more jobs to wait on fixed resources, which
significantly increases the queue length andwaiting time, for
only a modest cost savings. The result is a super-linear
increase in opportunity cost, as the super-linear increase in
waiting time dominates the linear decrease in price.

Fig. 10. Normalized price P and mean wait time w as a function of the
short job threshold t (in seconds) for s=101 under an LJW waiting policy.
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Key Point. LJW’s effective price is robust to over-predictions
and sensitive to under-predictions, while its mean waiting time is
robust to under-predictions and sensitive to over-predictions. LJW
is more sensitive to over-predictions, since they cause a super-linear
increase in waiting time for only a linear decrease in price.

Similar to SWW’s uncertainty analysis in Section 4.1.1,
our results above are important in assessing and contextual-
izing the accuracy of new and existing methods for predict-
ing job running times. Specifically, for cloud-enabled
schedulers, these prediction techniques should focus on
minimizing over-predictions, and they should be evaluated
separately for over- and under-predictions.

4.3 Compound Waiting Policies

Model Analysis. Waiting policies, unlike scheduling policies,
are not mutually exclusive. That is, we can concurrently
apply multiple waiting policies that select jobs to wait based
on different characteristics. Thus, we analyze a compound
waiting policy that combines the advantages of AJW-T,
SWW, and LJW. In analyzing this policy, we first apply
LJW’s analysis from Section 4.2, since its waiting decisions
are based on job running time, and are thus load insensitive
and not affected by other waiting policies. Our LJW analysis
yields a fraction r of short jobs that always run on on-
demand resources, which we label rshort. The remaining
ð1� rshortÞ long jobs run on fixed or on-demand resources
depending on their waiting time.

We next apply SWW’s analysis from Section 4.1 solely to
the remaining long jobs. In particular, we compute the frac-
tion rsww of the remaining long jobs that run on on-demand
resources (due to long wait times) by applying Lemma 3.1
using �long and mlong from Section 4.2 for a given value of s
and b. This is an approximation, since Lemma 3.1 assumes
exponentially distributed service times, and the long jobs’
service time distribution is an exponential distribution trun-
cated at t. This approximation becomes more accurate as
t ! 0 and the distribution approaches an exponential.
Given rsww, the effective price for our compound waiting
policy is as follows.

P ¼ ð1� rshortÞ � ð1� rswwÞ � m

mlong

� pf
rf

þ ð1� rshortÞ � rsww � m

mlong

� po þ rshort � m

mshort

� po:

(24)

The last additive term is the product of the fraction of
short jobs that run on on-demand resources, their fraction

of the mean service time, and the on-demand price. The sec-
ond term is the same, but applies only to the fraction of long
jobs with high wait times that run on on-demand resources.
The first additive term is the remaining long jobs with short
waiting times that run on fixed resources. Here, rf , shown
below, is the mean utilization of the fixed resources, which
is simply the adjusted arrival rate of jobs to the fixed resour-
ces divided by their mean service rate, and then normalized
by s.

rf ¼ ð1� rshortÞ � ð1� rswwÞ � �

s� mlong

: (25)

We use the same approach as in LJW to approximate the
compound policy’s mean waiting time, but replace the wait-
ing time under AJW with the waiting time under SWW
from Equation (13) as below, again using �long and mlong as
the input. The coefficient of variation CV is the same as in
LJW.

w �
CV 2þ1

2 � ð1� rswwÞ � ða�bð1�dbe�d�b�e�d�bÞ
ð1�rswwÞ�d2

Þ r < 1

CV 2þ1
2 � ð1� rswwÞ � ð a�b�b2

ð1�rswwÞ�2Þ r ¼ 1

8<
: :

(26)

Empirical Validation. Fig. 12 compares our compound wait-
ing policy with LJW using our baseline parameters with
b=900 and t= 180. The primary advantage of the compound
policy over LJW is that it strictly lowers the overall waiting
time, since long jobs do not wait indefinitely, which is espe-
cially important when resources are under-provisioned, for

Fig. 11. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the fraction of jobs with incorrect over- and under-
predictions (%) of job running time for s=101 and t=180 under an LJW waiting policy.

Fig. 12. Normalized price P and wait time w as a function of fixed resour-
ces s for our compound policy (b=900 and t=180) and LJW (t=180).
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nearly the same effective price. As shown, the compound
policy’s mean waiting is less than or equal to that of the
LJW policy.

Key Point. Our compound policy combines the advantages of
AJW-T, SWW, and LJW, and thus offers the best tradeoff.

4.4 Model Results Summary

Our analyses show that waiting policies offer a complex
tradeoff between fixed resource provisioning, cost, andwait-
ing time. To summarize these tradeoffs, we again use the
opportunity cost of waiting. Recall from Section 4.1.1 that the
mean opportunity cost equals P � w and is in dollars, where
lower values of P and w are better. Fig. 13 shows the mean
opportunity cost of waiting for AJW, AJW-T (for b = 900),
SWW (for b = 900), LJW (for t=180), and our compound pol-
icy (for b= 900 and t=180) using our baseline parameters.
Since the effective price P is bounded (by pf ) and waiting
time is not, the opportunity cost for all policies approaches
zero as s increases. Just aswith a scheduling policy, a waiting
policy’s importance increases with resource constraint. We
exclude NJW, as its opportunity cost is always zero, since its
waiting time is zero. For the remaining policies where a
price-waiting time tradeoff exists, our compound policy
yields the lowest opportunity cost.

While the inter-arrival and service time distributions
affect the absolute differences in price and waiting time
between waiting policies, many aspects of our analysis are
generalizable, and hold regardless of the job inter-arrival
and service time distributions. As a result, our models and
analysis are most useful in enabling users to better under-
stand and reason about the effect of different waiting poli-
cies by understanding how their system and workload
characteristics differ from the models’ assumptions. Specifi-
cally, SWW always results in a shorter mean waiting time
than AJW-T; higher values of the waiting time threshold b
always increase fixed resource utilization, decrease price,
and increase waiting time; increasing the short job threshold
t always increases price and decreases waiting time; and the
compound policy always combines the advantages of AJW-
T, SWW, and LJW. Our evaluation in Section 6 echoes this
point by empirically showing the relative price, waiting
time, and opportunity cost between the waiting policies of a
real workload precisely follows our analysis.

In addition, the general insights above also hold for dif-
ferent scheduling policies. While the waiting policy is

distinct from the scheduling policy, and both can be defined
independently, there is some interaction between them.
Fig. 14 shows the same experiment as Fig. 13, but with
shortest job first (SJF) as the scheduling policy instead of
FCFS. Note that Fig. 14 only plots data from simulations of
the same synthetic workloads as in Fig. 13, since there is no
similar closed-form analytical queuing models for SJF
scheduling. In addition, predictions of queue waiting time
under SWW are much more difficult under SJF, since the
ordering of jobs in the queue changes based on newly arriv-
ing jobs. Thus, waiting time predictions under SJF require
future knowledge. The graph shows that the relative order-
ing of waiting policies is the same when using SJF and
FCFS, and also that the trends are the same. Of course, the
absolute opportunity cost when using SJF is significantly
less because SJF substantially decreases the waiting time for
jobs that wait for fixed resources.

Aswe show in Section 6.2, the pricewhen using SJF is simi-
lar to using FCFS. Using SJF has no effect on LJW, since it
determines whether a job waits based on its own characteris-
tics. SJF does affect SWW: since short jobs wait less than long
jobs under SJF, SWW in this case prioritizes short jobs to wait
for fixed resources. However, in isolation, prioritizing short
jobs does not substantially increase the price, since most jobs
are short anyway (both in the synthetic workloads here and
our real workload in Section 6), a similar set of jobs run on on-
demand VMs. When SWW is used in conjunction with LJW
under SJF scheduling, LJW cancels out this implicit short job
prioritization of SWW under SJF, because LJW automatically
sends short jobs to run on on-demand resources. We discuss
the inter-play between the waiting policy and scheduling pol-
icy in the context of SJFmore in Section 6.2.

5 IMPLEMENTATION

We implemented a waiting policy model analyzer based on
our analysis, as well as a trace-driven job simulator, in
python.

Model Analyzer. Our model analyzer implements the ana-
lytical queuing model for all the waiting policies we ana-
lyze. The analyzer enables what-if analyses to compare and
understand a workload’s expected cost and job waiting
times under different policies and parameter values. The
analyzer takes as input a policy’s name and �, m, s, pf , and
po, as well as b for AJW-T, SWW, and the compound policy,
and t for LJW and the compound policy. Users may also

Fig. 13. Opportunity cost as a function of fixed resources s under AJW,
AJW-T, SWW, LJW, and compound policy when using FCFS scheduling.

Fig. 14. Opportunity cost as a function of fixed resources s under AJW,
AJW-T, SWW, LJW, and compound policy when using SJF scheduling.
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enter a workload duration T . The analyzer’s output is the
policy’s mean waiting time w, the effective price P , the frac-
tion of jobs that run on on-demand resources r, and, if T is
specified, the total cost C. If s is unspecified, the analyzer
finds the optimal s that minimizes price P and outputs the
values above at the optimal. We plan to publicly release our
model analyzer, which can be used to re-produce our model
graphs in Sections 3 and 4.

Job Simulator. We implemented a trace-driven job simula-
tor in python that mimics a cloud-enabled job scheduler,
which can acquire VMs on-demand to service jobs. The sim-
ulator uses a FCFS scheduling policy, and also implements
each of our waiting policies. The simulator takes as input a
trace of jobs, s, pf , the name of a waiting policy, and the
same waiting policy-specific parameters as above. Users
must also specify the number of cores and memory allot-
ment for each fixed resource s. Since cloud platforms offer
VMs in different sizes, the simulator includes a table of
available on-demand VM options that specify their cores,
memory, and price. In our evaluation, we consider only the
8 VM types in the m5 family of general-purpose VMs on
AWS. While VMs in the m5 family have different resources,
they all offer the same price per unit of resource. The simu-
lator’s output is the mean waiting time w, the effective price
P , the fraction of jobs that run on on-demand resources r,
and the total cost C.

Each job in the input trace has a service time based on its
resource, e.g., core and memory, requirements. For fixed
resources, we use only m5.16xlarge VMs—the largest in
the m5 family—to mitigate the impact of imperfect packing
of jobs to VMs. Our job simulator packs jobs onto fixed
resources using a simple best-fit heuristic. When selecting
an on-demand VM for a job, our simulator selects the small-
est (and cheapest) VM from among the 8 types within the
m5 family to run the job that satisfies the job’s resource
requirements. Note that our analytical model of LJW in Sec-
tion 4.2 is not work-conserving. For consistency, our LJW
results in Section 6 are also not work-conserving, although
our simulator can also be configured to be work-conserving.
Our job simulator also does not include some system char-
acteristics that may be important in practice, such as startup
overheads and additional external constraints on which
VMs each job may use, since our goal is not to precisely rep-
licate the behavior of a real system, but to isolate and under-
stand the impact of different waiting policies on price and
waiting time. The effect of these additional system charac-
teristics are orthogonal to the waiting policy, and including
them would serve to obscure, rather than reveal, the effects
of the waiting policy. We have publicly released our job
simulator at the UMass Trace Repository [7], [9].

Real-World Data. In Section 6, we use our job simulator to
quantify the impact of different waiting policies on a real
year-long job trace that includes 14M jobs from a production
high-performance computing cluster consisting of 14.3k
cores. The cluster is the University of Massachusetts
(UMass) System Shared Cluster, and is available for general
use to researchers from all five campuses in the UMass sys-
tem [8]. Thus, the workload is a representative sample of
job types across the entire scientific, engineering, and medi-
cal research communities. The cluster is housed in the Mas-
sachusetts Green High Performance Computing Center

(MGHPCC), a 15MW data center in Holyoke, Massachusetts
that also hosts infrastructure Boston University, Harvard,
MIT, and Northeastern. The cluster runs the LSF job sched-
uler, and we use its log from the year 2016 to drive our sim-
ulations. Each job entry in the log includes its submission
time, user ID, maximum running time limit, requested
number of cores and memory, and running time. Note that
the maximum running time limit is not an effective predic-
tor of job running time, since it is typically many orders of
magnitude greater than jobs’ actual running time. As a
result, using the maximum running time as a predictor
results in nearly 100 percent of jobs having their running
time under-predicted. We modify the raw trace to conform
to our job simulator’s input format. We have publicly
released this job trace [7], [10].

6 EVALUATION

We do not intend our models to be predictive, but instead
evaluate their usefulness in analyzing a real year-long batch
workload. Specifically, we show that our models both 1)
accurately predict the relative price and waiting time
between different waiting policies in our real workload, and
2) enable reasoning about price and waiting time by under-
standing the differences between our model’s and the real
workload.

6.1 Workload Characteristics

Fig. 15 characterizes our real workload and our model’s
ideal. Fig. 15a is a histogram of job inter-arrival times for
our trace and an exponential distribution with the same
mean, which is 0.4527 jobs/sec. Note that the bin size is
non-uniform, since our trace much more bursty than our
model assumes. In particular, nearly 90 percent of job inter-
arrival times are between 0 and 1 second compared with
less than 40 percent for an exponential distribution with the
same mean. An exponential distribution instead has more
inter-arrival times between 1 and 15 seconds. Both distribu-
tions have a heavy tail with our job trace experiencing a few
more extremely long inter-arrival times, between 3 minutes
and 50 hours.

Fig. 15b is a similar histogram of job service times with a
mean service time 1=m of 6225 seconds (or 1.73 hours) per
job. Again, the bin size is non-uniform due to our trace’s
large skew. In this case, over 60 percent of jobs are between
0 and 3 minutes, while an exponential distribution with the
same mean has only 3 percent of its jobs in this range.
Instead, the exponential distribution has more jobs of mid-
range length between 3 minutes and 6 hours. However, our
trace has a slightly higher fraction of extremely long jobs,
which account for a large fraction of the overall job execu-
tion time and cost. Thus, overall, the job service times in our
trace have both a heavier head and tail compared to the
exponential distribution. To further illustrate, Fig. 15c
shows the fraction of long and short jobs, and their resource
usage (in memory�core hours), as a function of the short
job threshold t. The graph shows that short jobs are a high
fraction of jobs, even for large short job thresholds, but
account for only a small fraction of the resource usage. As
we show, since this skew is more extreme in our trace than
in our model, LJW’s ability to decrease mean waiting time
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is much greater than our model, since there is a larger frac-
tion of short jobs that never wait.

Finally, Fig. 15d shows a scatterplot of the core and mem-
ory requirements for each job. Our model assumes job
resource requirements are uniform and map directly to
each VM’s resources. However, our simulator only sched-
ules a job on a VM if it has enough available cores and mem-
ory to satisfy a job’s requirements. Our simulations assume
a large m5.16xlarge VM with 64 cores and 256 GB mem-
ory to mitigate imperfect job packing on VMs. We contextu-
alize our results by comparing against the current fixed-size
cluster, which consists of 14,376 cores and is equivalent to
225 m5.16xlarge VMs. Simulating this cluster on our
trace yields a mean waiting time of 13.3 hours and a cost of
$2,421,965, or $276.48/hour. As before, we use a discount
factor d � 0:4 based on the m5.16xlarge’s on-demand
price of $3.072/hour and its 3-year reserved price of $16,046.

6.2 Real-World Workload Results

Fig. 16 shows the normalized price (a), mean waiting time
(b), and opportunity cost (c) for each of our waiting policies
with FCFS scheduling policy. We select the maximum wait-
ing time threshold b=24 hours for SWW and AJW-T, or
slightly less than double the current cluster’s mean waiting
time using AJW. We select the long job cutoff t=3m where
60 percent of jobs are short and 40 percent are long.

Price. As expected, Fig. 16a shows that AJW yields the
lowest price, since it requires all jobs to wait for fixed
resources. Interestingly, LJW yields nearly the same price
even though it executes 60 percent of the total jobs on on-
demand VMs. Since these 60 percent of short jobs comprise
only a small fraction of the overall job execution time, exe-
cuting them on on-demand VMs does not substantially
increase the normalized price. SWW, AJW-T, and our com-
pound policy yield nearly the same price for the same

reason. This price is greater than LJW because SWW and
the compound policy cut the tail off the job waiting time dis-
tribution by preventing jobs that would have to wait longer
than 24 hours from ever waiting. Running these jobs, which
may include long jobs, on on-demand VMs increases the
price. As fixed resources decrease, the price reaches a mini-
mum before increasing, as an increasingly larger share of
the jobs experience (or would experience) long waiting
times and thus instead run on on-demand resources. NJW
has a �26% higher price than SWW, since it directs any job
that must wait to on-demand resources.

When using AJW, our current cluster yields a normalized
price of 0.6 at x=225 fixed resources, while the minimum
cost under the compound policy is 0.571 at x= 150, or 5 per-
cent less. For our trace, P =0.6 translates to an annual cost
of $2,421,965, while 0.571 translates to $2,304,903, or over
$100k lower. This cost advantage for our compound policy
is less than our model predicts, since our burstier workload
causes more jobs to run on on-demand resources, which
increases the price.

Waiting Time. As our model predicts, Fig. 16b shows that
the mean job waiting time under AJW and LJW increases
super-linearly as fixed resources decrease. However, even
though LJW’s cost is nearly the same as AJW’s, its mean
waiting time is substantially less because the large fraction
of short jobs never wait. In contrast, the mean waiting time
under AJW-T, SWW, and the compound policy increases
modestly as fixed resources decrease. Even at x= 100, the
mean waiting time of these policies is less than the 13.3
hour mean waiting time in our current fixed size cluster
(AJW at x=225). At x= 150, the compound policy has a
mean waiting time of 1.74 hours, or 7� less than our current
cluster (for 5 percent less cost).

Our compound policy’s waiting time is much less than
our model predicts due to the burstier workload, where

Fig. 15. Histograms of job inter-arrival times (a) and service times (b) for our real production batch workload along with an exponential distribution
using the same mean, as well as the mix of long and short jobs (c) and a scatterplot of job resource requirements (d).

Fig. 16. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of m5.16xlarge VMs when executing our real pro-
duction batch workload under AJW, AJW-T, SWW, LJW, and our compound policy with FCFS scheduling policy.
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large bursts of jobs cause long waiting times for a large frac-
tion of short jobs under AJW. Running these short jobs on
on-demand VMs significantly reduces waiting time at little
cost. In addition, running jobs with long waiting times on
on-demand VMs only modestly increases cost for large
decreases in waiting time.

Opportunity Cost. Fig. 16c graphs the mean opportunity
cost of waiting P � w for each policy, and shows that, as our
model predicts, the compound policy offers the best trade-
off by a significant margin compared to the other policies.
Note that, even though our workload’s characteristics differ
significantly from those assumed by our model, the overall
trends in opportunity cost match those from our model in
Fig. 13.

Key Point. Our real workload’s burstier job arrivals and heavier
head/tail service time distribution makes the compound policy’s
waiting time advantage much greater than our model predicts.

Key Result. At the optimal, the compound policy decreases the
cost (by 5 percent) and mean job waiting time (by 7�) compared
to the current cluster using AJW, and decreases the cost (by 43
percent) compared to renting on-demand resources for a compara-
tively modest increase in mean job waiting time (at 1.74 hours).

SJF Scheduling. We next repeat the experiments above
using the same parameters but using the SJF scheduling pol-
icy instead of FCFS scheduling. Fig. 17 shows the results. As
mentioned in Section 4.4, Fig. 17a shows nearly the same
normalized price across all the waiting policies as in
Fig. 16a. In some cases, as with AJW and LJW, the price is
the same, since these waiting policies are not sensitive to the
scheduling policy. SWW is sensitive to the scheduling pol-
icy, and prioritizes short jobs on fixed resources, since these
jobs have a lower waiting with SJF. However, since the vast
majority of jobs in our real-world trace are already short,
this only slightly increases the normalized price. Since the
compound policy includes SWW, there is a similar impact
on the normalized price. NJW’s price is also higher under
SJF for the same reason.

Fig. 17b shows that SJF significantly decreases the wait-
ing time across all waiting policies compared to Fig. 16b.
Note that LJW and AJW in this experiment require a mini-
mum of 150 VMs to run all jobs within the year, and thus
we do not extend their results below 150 VMs. SJF is well-
known to optimize for waiting time, often at the expense of
starving longer jobs. However, in our case, long jobs never
starve when using AJW-T, SWW, or the Compound policy,
since in this case, if jobs have to wait longer than the waiting
time threshold, the scheduler runs them immediately on on-
demand. Importantly, the trends and relative ordering of

the waiting policies under SJF is the same as under FCFS
based on our analysis from Section 4.4.

Finally, Fig. 17c shows the opportunity cost of all waiting
policies under SJF. As with our model’s workload in Sec-
tion 4.4, the opportunity cost decreases compared to FCFS
due to the substantial decrease in waiting time. As when
using FCFS, the relative ordering of opportunity cost when
using SFJ remains the same with the compound policy
yielding the lowest opportunity cost.

6.3 Sensitivity Analysis

We perform a sensitivity analysis that varies b, t, and errors
in estimating job waiting time and running time to under-
stand their effect on the results. We chose the values above
for b= 24h and t= 3m arbitrarily to be reasonable, as 24h is
roughly twice the mean waiting time under AJW and t= 3m
categorizes a large fraction (60 percent) of jobs as short. We
also assume accurate estimates of job waiting and running
time, e.g., using historical data. Our sensitivity analysis
assumes 150 m5.16xlarge’s when using the compound
policy, which as discussed in Section 6.2 and shown in
Figs. 16a and 17a is the number of fixed resources that mini-
mizes cost under both FCFS and SJF scheduling,
respectively.

Parameter Sensitivity. Fig. 18 plots price, waiting time, and
opportunity cost as a function of the short job threshold t
with lines for different values of the waiting time threshold
b. We vary t from 3-30m and the waiting time threshold
from 6h-48h. The price (a) increases linearly with the short
job threshold t, albeit with a small slope, since this increases
the fraction of short jobs that run on on-demand VMs at a
higher price. The price also decreases roughly linearly for
every doubling of the waiting time threshold b, as longer
waiting time thresholds force more jobs to wait for lower
cost fixed VMs. In contrast, the mean waiting time (b)
decreases as the short job threshold increases, at an increas-
ingly slower rate, as fewer jobs wait for fixed VMs. This
non-linearity derives from Fig. 15c. Similarly, the mean
waiting time decreases as the waiting time threshold
decreases, also at an increasingly slower rate. Finally, the
opportunity cost (c) is dominated by the mean waiting time,
and thus exhibits a similar trend. As t increases, the
decrease in waiting time outweighs the increase in cost due
to Fig. 15c. As b ! 0, the compound policy approaches NJW
(for long jobs) where there is no tradeoff, and the waiting
time and opportunity cost are zero.

Error Sensitivity. Fig. 19 plots price, waiting time, and
opportunity cost as a function of the short/long job

Fig. 17. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of m5.16xlarge VMs when executing our real pro-
duction batch workload under AJW, AJW-T, SWW, LJW, and our compound policy with SJF scheduling policy.
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prediction error, which is both the percentage of long jobs
we mispredict as short, and short jobs we mispredict as
long. Similarly, each line captures the waiting time thresh-
old error, which is both the percentage of jobs that should
wait but do not, and that do not but should. The graph
shows price (a) is directly proportional to the short/long job
prediction error, such that a 1 percent increase in error
causes a 1 percent increase in price. In contrast, waiting
time threshold errors are non-linear, with progressively
lower price increases for each 10 percent increase in error.
The graph still shows large savings compared to using on-
demand even under high error rates. The mean waiting
time (b) is much less affected by the short/long job predic-
tion error, since a similar number of jobs must still wait (it is
just the long jobs not waiting that increases the price).
Higher values of errorb actually decrease mean waiting
time: while a larger percentage of (long) jobs that do not
wait but should increases price, it decreases waiting time.
As above, the waiting time trend dominates the opportunity
cost (c), and thus shows a similar trend.

6.4 Effect of Prediction Accuracy

To understand the effect of prediction accuracy for our wait-
ing policies, we vary the errors in estimating job waiting
time and running time in terms of their over- and under-
predictions as in our analysis from Sections 4.1.1 and 4.2.1.
We use the baseline values of b= 24h for the waiting time
threshold and t=3m for the long job threshold. As in our
model analysis, we consider the case of over predictions
and under predictions separately based on the fraction of
jobs fover and funder that over- and under-predict their job
waiting time and job running time for SWW and LJW,
respectively. In particular, we simulating each waiting pol-
icy using our job trace, we explicitly control the percentage

of jobs that over- and under-predict waiting times and run-
ning times. For example, if we set fover for the waiting time
threshold to N%, this means that N% of the jobs that would
have waited (due to having a short waiting time) will now
run on on-demand resources due to an over-prediction of
their waiting time. We emulate this over-prediction by uni-
formly randomly sampling N% of jobs that should wait,
and instead run them on on-demand resources. Similarly, if
we set funder for the waiting time threshold to M%, this
means that M% of the jobs that should not have waited (due
to having a long waiting time) will now wait due to an
under-prediction of their waiting time. We again emulate
this under-prediction by uniformly randomly sampling M%
of jobs that should not wait, and instead force them to wait
for fixed resources. We use the same approach to simulate
over- and under-prediction errors for job running time.

Over-Predicting Waiting Time. Fig. 20 plots the normalized
price P and mean job waiting time W as a function of fixed
resources s for different prediction errors fover under SWW,
where fover is fraction of the jobs over-predicting their wait-
ing time and thus runs it on on-demand resources when it
should have waited for fixed resources. As the graph shows,
the normalized price (a) increases with the over-prediction
error. As fover increases, the cost of running the workload
under SWW increases and approaches that of NJW. This
graph mirrors Fig. 7 from Section 4.1.1 that uses our analyti-
cal model to quantify the effect of over-predictions of wait-
ing time on price. The only difference here is that the
scheduler is work-conserving, so NJW serves as a strict
upper-bound on price even when the fixed resources are
over-provisioned. Fig. 20b shows that the mean job waiting
time decreases as fover increases and eventually approaches
0 (or the behavior of NJW). Similar to above, this graph mir-
rors Fig. 8 from Section 4.1.1 that uses our analytical model
to quantify the effect of over-predictions of waiting time on

Fig. 18. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the long job threshold (t) when executing our real
production batch workload under a compound policy assuming 150 m5.16xlarge VMs.

Fig. 19. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the long job prediction error when executing our real
production batch workload under a compound policy assuming 150 m5.16xlarge VMs.
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the mean wait time. As in our model, the mean wait time is
monotonically decreasing and approaches 0 as the number
of fixed resources increases. Importantly, our empirical
results on over-predictions reinforce the key points from
our models in Section 4.1.1: that SWW is highly sensitive to
over-predictions, such that 3-5 percent over-predictions sig-
nificantly alters both the normalized price and the mean
waiting time.

Under-Predicting Waiting Time. Fig. 21 plots the mean job
waiting time w as a function of fixed resources s over differ-
ent prediction errors funder using SWW, where again funder
is fraction of the jobs that under-predict their waiting time.
Thus, these under-predicting jobs wait for fixed resources
when they should have run immediately on on-demand
resources. As expected, the mean waiting time w increases
as funder increases, such that the mean waiting time
approaches 0 as funder increases. Since the normalized price
under SWW and AJW-T remains the same regardless of the
under-prediction error, we omit it here. The graph exhibits
the same trend as our model predicts from Fig. 9 from Sec-
tion 4.1.1. In addition, our empirical results also emphasize
the key point from our model, which is that under-predict-
ing the waiting time does not have a significant affect on the
results: it does not alter the normalized price, and it only
affects the mean waiting time when the fixed resources are
under-provisioned.

LJW Prediction Accuracy. Fig. 22 plots the normalized
price, mean waiting time, and opportunity cost under LJW
policy as a function of the fraction of jobs with inaccurate
runtime predictions. We plot the normalized price in (a) for
both over-predictions and under-predictions. In this case,

our experiment assumes that the number of fixed resources
is 200 m5.16xlarge VMs and the long job threshold is 3
minutes. For over-predictions, the x-axis represents the frac-
tion of jobs with runtime less than the long job threshold t
where we over-predict the running time to be greater than t,
while for under-predictions, the x-axis represents the frac-
tion of jobs with runtime greater than t where we under-
predict the running time to be less than t. The dotted line
shows the price (a) and mean waiting time (b) from LJW
with perfect predictions of job running time. As above, our
empirical results match the trends shown by our analytical
models in Figs. 11a and 11b from Section 4.2.1. In particular,
our results show that increasing under-prediction errors
has little-to-no effect on the normalized price, but results in
a linear increase in waiting time. In contrast, increasing
over-prediction errors result in a linear increase in price,
but a super-linear decrease in mean waiting time. Finally,
Fig. 22c shows the opportunity cost for over- and under-pre-
diction errors as a function of the error rate. As in Fig. 11c
from Section 4.2.1, this graph shows that for our real work-
load, LJW is more sensitive to over-predictions of job run-
ning time than under-predictions, since under-predictions
cause waiting time to quickly drop to zero, while over-pre-
dictions cause a significant increase in waiting time.

7 GENERALIZATION BEYOND CLOUDS

While we focus on cloud platforms in this paper, our queu-
ing models are general and can also apply to other resour-
ces. Just as general queuing models have proven useful for
decades in better understanding scheduling policies in a
variety of contexts, we believe they will also prove useful in
understanding waiting policies. As physical infrastructure
becomes increasingly networked and programmatically
driven, the cloud IaaS model is starting to spread to other
sectors, such as transportation and energy, where schedu-
lers can similarly choose between using buying or renting
resources to service various types of “jobs.” Under this
emerging Anything-as-a-Service (XaaS) model, schedulers
face the same problem as in the cloud: they must determine
how many fixed resources to provision versus rent on
demand based on their expected workload to optimize their
cost and job waiting times. There are many emerging sce-
narios in other domains, including transportation and
energy, where waiting policies may apply, albeit under
slightly different circumstances. We discuss scenarios in

Fig. 20. Normalized price (a) and mean job waiting time (b) as a function of fixed resources s when executing our real production batch workload
under SWW for different over-prediction errors fover and NJW.

Fig. 21. Mean waiting time as a function of fixed resources s when exe-
cuting our real production batch workload under SWW for different over-
prediction errors funder.
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energy and transportation where waiting policies may
apply, and how they might differ from their use with cloud
platforms. Of course, fully adapting our models to other sce-
narios is future work, since, similar to the cloud, each sce-
nario presents its own specific context, which might require
adaptations to the models.

Transportation. Uber, Lyft, and others have enabled on-
demand transportation by connecting those needing rides
with cars (and drivers) willing to provide them. As a result,
users can now choose between buying their own car, or
renting cars on-demand on a per-ride basis. These services
have now evolved to transporting, not only people, but also
packages within urban environments, e.g., Uber Connect
and Lyft Essential Deliveries. Thus, similar to cloud schedu-
lers, companies that schedule package deliveries now have
a choice between maintaining their own vehicle fleet (and
drivers) to deliver packages, or renting vehicles on-demand.
As with our cloud example, buying a vehicle is cheaper than
renting one if its utilization is high, and thus the optimal
provisioning of vehicles depends on how long the company,
and its customers, are willing to wait for their packages. In
this case, the resource is the vehicle, and the “job” is deliver-
ing the package, which takes different lengths of time
depending on the distance to the destination. Unlike with
computing, the distance and thus the job length is well-
known, although there may be some variation due to traffic.
With the emergence of autonomous vehicles, we expect this
scenario to become even more important.

Energy. A similar concept also occurs in the energy sector
when considering choosing between using locally generated
solar energy and grid energy. In this case, solar energy is
fixed, since it requires an initial capital expense, while grid
energy is “rented” on-demand since users can access it any-
time and pay only for what they use. Solar energy’s cost is
lower than grid energy is most locations, as long as it can be
productively used. We assume here that locally generated
solar energy is not “grid-tied,” and thus cannot be sold back
to the grid. Such grid-tied solar is increasingly being
restricted as grid solar penetration increases, requiring
users to consume their excess solar energy locally or store it
in a battery. Waiting policies apply to this scenario, since
there is a choice between using locally generated solar
energy and grid energy to execute some “job.” For example,
consider a solar-powered EV charging station where each
“job” is the task of fully charging an EV. An EV charging
scheduler must decide whether fixed solar energy or on-
demand grid power should charge each EV. The optimal
provisioning of solar capacity depends on how long the

charging station is willing to have users wait for solar
energy to become available. However, a key difference from
the cloud example is that the fixed solar resource’s capacity
is variable in addition to job durations and inter-arrival
times. Thus, optimal provisioning for solar requires extend-
ing our model to account for stochasticity in the fixed
resource capacity, which is part of future work. Even so,
waiting policies that which jobs wait, and for how long, are
fundamental to optimally provisioning these systems.

8 RELATED WORK

Our work is related to, and builds on, a wide variety of prior
work in multiple different areas, which we summarize
below.

Cloud Computing. While our queuing model is general
and applies to any XaaS scheduler, our primary motivating
example is from cloud platforms that present users with a
choice of renting cloud resources on demand at a higher
price than purchasing them (or reserving them for a long
period). While prior work focuses on optimizing the provi-
sioning of reserved VMs in the cloud, it makes simple work-
load assumptions. In particular, prior work often assumes
the workload is continuous and uniform, rather than com-
posed of discrete jobs, which leads to solutions based on
dynamic and integer programming [15], [23], [24], [30], [33],
[34]. The canonical application is a distributed web server
with a front-end load balancer that distributes requests. As
a result, this work does not explore the tradeoff between
price and job waiting time. These techniques do not map to
cloud-enabled job schedulers, such as Kubernetes and
Slurm, that must schedule jobs on on-demand and fixed
resources.

Shen et al. focus on a similar problem in the context of a
job scheduler, but do not permit any queuing, and instead
use integer programming to determine the size of VMs to
allocate and how to efficiently pack jobs onto on-demand
and reserved VMs [30]. Our queuing models do not con-
sider jobs with different resource requirements, and how to
bin pack them on resources. Since providers typically offer
VMs in fixed sizes, this results in some model inaccuracy
and cost inefficiency.

Queuing Theory and Marginal Analysis. Our work applies a
number of previously developed queuing theory results to
gain insights into key tradeoffs exposed by different waiting
policies. In particular, our work builds on classic marginal
analysis and queuing results by Erlang and others [19], [25],
[31], [35]. The emergence of cloud-enabled schedulers is

Fig. 22. Normalized price (a), mean job waiting time (b), and opportunity cost (c) as a function of the fraction of jobs with over- and under-prediction
errors (%) in job running time for s=200 m5.16xlarge VMs and t=3 minutes when executing our real production batch workload under LJW.
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increasing the importance of these results in optimizing
cost. As we discuss, AJW’s analysis is simply that of an
M=M=s=1 queue, and NJW’s analysis applies classic mar-
ginal analysis where jobs never wait for resources [25]. Our
analysis for AJW-T and SWW combines recent results on
reneging and balking by Liu and Kulkarni [27] with classic
marginal analysis, and shows how a waiting time threshold
defines a spectrum between AJW and NJW. Our SWW anal-
ysis also models inaccurate waiting time predictions.

In general, reneging and balking are examples of
“customer abandonment” policies from queuing theory,
which model customers, i.e., jobs, becoming impatient and
leaving the queue. Many of these models are probabilistic
and assume an increasing fraction of customers (or jobs)
abandon the queue as their waiting time increases based on
diverse customer preferences. These customer-centric mod-
els do not apply to our context, where the waiting policy
determines whether jobs abandon the queue (and run on
on-demand resources). Finally, our LJW analysis leverages
a well-known approximation for the waiting time of a
M=G=s=1 queue. Finally, our compound policy analysis
combines and extends elements from each waiting policy.

Ski Rental Problems. Our problem is similar to the classic
ski rental problem in online algorithms [11]. However, the
assumption in online algorithms is that there is no (or lim-
ited) knowledge of the future, whereas our queueing analy-
sis leverages a workload characterization to model the
system. Ski rental problems also typically focus on whether
to buy or rent a single resource whereas our problem
focuses on provisioning, i.e., how many resources to buy
versus rent, and generally do not consider the cost and wait-
ing time tradeoff. Recent work examines improving online
algorithms, including the ski rental problem and job sched-
uling, using ML predictions [26]. Our model accounts for
inaccurate predictions of waiting time made by ML classi-
fiers, and thus offers a benchmark accuracy that ML classi-
fiers must satisfy to achieve specific waiting time and cost
targets.

Job Scheduling. Our work is orthogonal to prior work on
job scheduling for fixed resources. A waiting policy is the
dual of a scheduling policy: while a scheduling policy deter-
mines which jobs should execute when fixed resources are
available, a waiting policy determines which jobs should
wait when fixed resources are not available. Given a cloud
platform, where jobs never need wait, the waiting time and
cost to execute jobs is a function of the waiting policy. The
scheduling policy may also affect waiting time and cost.
Our simple models assume FCFS scheduling. Some our
waiting policies exhibit similar properties as scheduling
policies. For example, LJW is akin to shortest job first sched-
uling, and reduces mean waiting time for a modest increase
in cost.

Prediction Accuracy. The SWW, LJW, and compound
waiting policies require knowledge of job runtime and
queue waiting times, which, as we discuss, may not be
available a priori. There is significant prior work on methods
for predicting both job running time and queue waiting
time [16], [17], [20], [29], [32]. For example, [32] estimates
job runtime by categorizing jobs using their common attrib-
utes, such as user ID or resources requested, and chooses
the estimate from the category that has produced the best

estimates in the past. Similarly, [29] presents a simple job
runtime and waiting time prediction model for a fixed clus-
ter (or grid) system, while [17] develops a model to derive
the upper bound of a job’s duration based on both workload
and cluster load prediction errors. [18] also utilize runtime
predictions to derive an upper bound on the cost required
to execute a workload, assuming a particular margin in their
prediction errors. Our goal in this paper is not to improve
upon this prior work, but to highlight the asymmetry in
over- and under-predictions with respect to waiting poli-
cies, which can enable future work on prediction methods
to better contextualize their accuracy for cloud-enabled
schedulers.

9 CONCLUSION

This paper introduces the concept of a waiting policy for
cloud-enabled schedulers, and defines, models, analyzes,
and empirically validates multiple fundamental waiting
policies. Our analysis reveals key tradeoffs in designing
waiting policies under FCFS and SJF scheduling, and also
captures the impact of inaccurate predictions of job running
time and waiting time on the fixed resource provisioning,
price, and mean waiting time. A goal of this paper is to pro-
vide a formal foundation for future work on waiting poli-
cies both analytically and empirically, including on more
general distributions of job inter-arrival and service times,
different scheduling policies, and machine learning (ML)
classifiers to accurately estimate job waiting and running
times. In addition, waiting policies are important in under-
standing how users value and provision fixed and on-
demand resources. Understanding these user valuations is
important for cloud providers in determining how to set the
price of fixed and on-demand resources to maximize their
revenue. Finally, while our paper focuses on evaluating
waiting policies in the context of cloud platforms, as we dis-
cuss in Section 7, the concept is general and may also apply
to emerging XaaS-enabled schedulers for other resources.
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