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ABSTRACT
In recent years, ridesharing services have revolutionized personal
mobility, offering convenient on-demand transportation anytime.
While early proponents of ridesharing suggested that these services
would reduce the overall carbon emissions of the transportation
sector, recent studies reported a type of rebound effect showing
substantial carbon emissions of ridesharing platforms, mainly due
to their deadhead miles traveled by a ride-share car between two
consecutive rides. However, reducing deadhead miles’ emissions
can incur longer waiting times for riders and starvation of ride
assignments for some drivers. Therefore, any efforts towards reduc-
ing the carbon emissions from ridesharing platforms must consider
the impact on the quality of service, e.g., waiting time, and on the
fair and equitable distribution of rides across drivers.

This paper proposes a holistic approach to reduce the carbon
emissions of ridesharing platforms while minimizing the degrada-
tion in user waiting times and equitable ride assignments across dri-
vers. Towards this end, we decompose the global carbon reduction
problem into two related sub-problems: carbon- and equity-aware
ride assignment and fuel-efficient routing. For the ride assignment
problem, we consider the trade-off between the amount of car-
bon reduction and the rider’s waiting time and propose simple yet
efficient algorithms to handle the conflicting trade-offs. For the
routing problem, we analyze the impact of fuel-efficient routing in
reducing the carbon footprint, trip duration, and driver efficiency
of ridesharing platforms using route data from Google Maps. Our
comprehensive trace-driven experimental results show substantial
emissions reduction of our proposed algorithmswith only a graceful
increase in riders’ waiting times. Finally, we release “E2-RideKit”,
a toolkit that allows researchers to augment ridesharing datasets
with emissions and equity information, enabling further research
on emissions analysis and improvement of ridesharing platforms.
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1 INTRODUCTION
In 2021, the United States accounted for about 17% of global green-
house gas (GHG) emissions. Of the 4.6 Billion Metric Tons (BMT)
energy-related emissions produced that year, 38% was from the
transportation sector—the highest share among six sectors [13].
Globally, transportation has a similar impact, contributing 37% of
CO2 emissions in 2021 [29]. In particular, urban mobility is esti-
mated to contribute 40% of CO2 emissions from road transport [18],
and given urbanization trends, demand is projected to more than
double by 2050 [47].

The impact of ridesharing services on the transportation market
has grown quickly during the past few years as a sustainable alter-
native to individual vehicle ownership. As reported by Bloomberg,
the size of ridesharing services was valued at $69.3B in 2022 and
is expected to hit $205.8B at the end of 2030 [5]. These services
have revolutionized people’s travel by providing convenient access
to individual or shared vehicles based on their requested pick-up
and drop-off locations. Consequently, ridesharing services, such as
Uber, Lyft, Grab, and Didi, have become immensely successful due
to their promise of personal on-demand mobility at any time [30].

Early proponents of ridesharing suggested that these services
would reduce reliance on privately-owned cars, reduce traffic con-
gestion, and reduce carbon emissions, with early studies estimating
that at least five private vehicles would be replaced for each shared
car and there would likely be carbon emission reductions if shared
cars were newer vehicles [33]. However, the success of these ser-
vices has resulted in an increase in traffic and more congestion
on roads—a rebound effect [26]. For example, in New York City,
ridesharing has been shown to constitute more than 50% of road
traffic [11, 50]. Another study has estimated that a typical rideshar-
ing trip is less efficient than a personal car trip, mainly due to
“deadhead” miles traveled by a ride-share vehicle between consecu-
tive hired rides, and that this generates 47% more CO2 emissions
than an equivalent private car ride [2, 7]. The study also showed
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that the greater convenience of ridesharing has steered passengers
away from public transit options. Others have reported that the
deadhead miles of ridesharing services account for an estimated
36-45% of their overall distance traveled [15, 27, 34].

The prevalence of deadhead miles and resulting carbon emis-
sions presents new opportunities to develop emission-aware ride
assignment algorithms. However, any carbon-aware optimization of
ridesharing systems must consider its impact on riders and drivers.
Prior work shows that existing ride assignment algorithms may
be unfair to drivers from certain demographics based on their gen-
der, age, and race [14, 25, 49]. An emission-aware ride assignment
can perpetuate such disparities by prioritizing drivers with newer,
more fuel-efficient vehicles. At the same time, new emission-aware
ride assignment algorithms should not increase rider’s waiting
times, which can negatively impact user satisfaction. Therefore,
any efforts towards reducing the carbon emissions from rideshar-
ing platforms should carefully consider its impact on the quality
of service (QoS), e.g., waiting time, and equity, e.g., distribution
of rides across drivers. While there has been significant work on
optimizing various facets of ridesharing systems [22, 44, 57], the
problem of emission-aware ride assignment to green ridesharing
systems has not seen much research attention.

The design space for emission-aware ridesharing optimization
is two-fold: (1) ride assignment to reduce the emissions from the
deadhead miles between two trips; (2) the routing strategy of a trip
to optimize emissions instead of other factors such as trip duration
or distance. In both problems, there is a trade-off between emissions,
QoS, and equity implications. A ride assignment based on a single
objective of emissions reduction may degrade both the rider and
driver’s QoS. For example, emission-aware ride assignments may
increase the rider’s waiting time by picking a vehicle from a soon-to-
be-completed trip to minimize the deadhead miles. Similarly, during
trip routing, the extended time in picking the most fuel-efficient
route instead of the fastest route may degrade user waiting times.
The equity impacts of emission-aware ride assignments are more
subtle. The emission-aware ride assignment may prefer electric
or low-emissions vehicles, which is unfair to drivers with high-
emissions vehicles that tend to belong to low-income communities.
Alternatively, the emissions-aware ride assignment policy may
assign trips with inevitably higher deadhead miles to low-emissions
vehicles, which then decreases the efficiency of their service due to
a higher deadhead-to-trip ratio.

In this paper, we take a holistic approach to emission-aware ride
assignment and trip routing in ridesharing platforms that considers
both the QoS and equity implications. We analyze the performance
and the trade-offs between their emissions reduction and QoS of
riders and drivers using a real-world ridesharing dataset. In doing
so, our paper makes the following contributions:
(1) Emission-aware ride assignment: We develop emissions-

aware ride assignment algorithms aimed at minimizing emis-
sions from deadhead miles while maintaining the quality of
service (QoS) for both riders and drivers. We first introduce
an offline solution that showcases the substantial potential for
emission reduction through an emission-aware ride assignment
policy. Following that, we introduce an online strategy that
allows for a configurable trade-off between emission reductions
and QoS, as measured by rider waiting times.

(2) Trip routing: In addition to the ride assignment strategy, the
routing policy also plays a significant role in determining overall
carbon emissions. We utilize route data provided by popular
navigation apps such as Google Maps to evaluate the trade-offs
among time (the fastest route), distance (the shortest route),
and fuel consumption (the greenest route) in routing following
emission-aware ride assignments.

(3) E2-RideKit design: As an independent contribution, we
present E2-RideKit, which augments an arbitrary ridesharing
dataset with per-ride carbon emission and per-driver/passenger
socioeconomic demographic information. It allows users to
configure EV penetration in the dataset, plugin complemen-
tary models, and extend the toolkit to add additional informa-
tion. As an example use case, we augment the widely-used
RideAustin dataset [48] with carbon emission and equity infor-
mation. In doing so, we outline the challenges we faced in aug-
menting the dataset and how we solved them. We hypothesize
that E2-RideKit enables researchers to augment ridesharing
datasets with emissions and equity information, enabling new
ridesharing analytics and optimizations.

(4) Experimental results: Finally, leveraging our toolkit, we
conduct a comprehensive evaluation of our emission-aware
ride assignment algorithm and trip routing policies using the
RideAustin dataset to produce multiple key findings. First, we
demonstrate that our emission-aware ride assignment algo-
rithms can decrease emissions from deadhead miles by up to
60% with a mere 4% increase in waiting time for the riders. Sec-
ond, replacing just 5% of the current fleet with EVs can improve
deadhead miles emission reduction to 67%. Third, optimizing
trip routing for emissions does not result in favorable tradeoffs;
emissions can only be reduced by 4.2% w.r.t. the fastest route
while increasing the trip duration by 3%. Finally, combining
emission-aware ride assignment and trip routing can reduce the
fleet-level emissions by 26%, at the expense of a 6.2% increase
in trip duration. The emission reduction can be improved to
29% by replacing only 5% of the current fleet with EVs.

2 PROBLEM STATEMENT AND CHALLENGES
Addressing the general problem of emissions reduction in rideshar-
ing1platforms involves two main challenges. First, the routing of
trips within the platform is important. Routing algorithms can be
tailored not only for the shortest distance or fastest route but also to
minimize fuel consumption and emissions. Second, optimizing ride
assignments to reduce emissions is also crucial. This involves effi-
ciently allocating vehicle rides to minimize deadhead mile between
the current trip’s drop-off location and the next pick-up location.
Achieving this goal is complex because it requires balancing reduc-
ing emissions and maintaining a high-quality experience for drivers
and riders. These two interconnected components of the problem
require careful consideration and trade-offs to ensure a sustainable
and equitable ridesharing ecosystem that simultaneously addresses
environmental and service quality concerns.
The fuel-efficient routing problem. Routing algorithms are pivotal in
determining the optimal route during a trip. These algorithms con-
sider various factors, including travel time, distance, and emissions
1Our work does not address carpooling or ridesharing of passengers.
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Figure 1: Ride assignment with the goal of minimizing dead-
head miles yields lower such miles and increment in waiting
time. We can reduce deadhead miles by assigning passenger
𝑁1 to driver𝑀2 with the cost of increase in waiting time.

produced. Variables such as route distance, traffic conditions, and
road quality influence travel time and emissions associated with
a particular route. It is important to note that the route with the
lowest emissions may not always align with the shortest distance
or the fastest travel time. As a result, different routing algorithms
may yield varying emissions and waiting times results.
The emission-aware ride assignment. The ride assignment strategy
also impacts the emissions due to the deadhead mile of a trip. Since
drivers are located at varying distances from passengers, and their
vehicles have distinct unit-distance emissions (emissions produced
per unit of distance traveled), the passenger-to-driver assignment al-
gorithm significantly impacts the overall emissions of the rideshar-
ing system and the average waiting time for passengers. While
some simplistic assignment algorithms may reduce emissions for
individual trips by assigning passengers to drivers with the lowest
emissions, this approach can lead to substantially extended waiting
times if the low-emission driver is situated far from the passenger,
potentially degrading the passenger’s satisfaction. Furthermore,
assigning passengers to drivers with the lowest emissions does
not inherently result in long-term optimal ride assignments for
the entire ridesharing service. On the other hand, a strategy that
prioritizes assigning passengers to the nearest available drivers
aims to minimize waiting times but may inadvertently result in
higher carbon emissions, as it overlooks variations in unit-distance
emissions produced by different vehicles in the fleet.
An illustrative example. In Figure 1, we illustrate the benefits of
our system-level emissions-aware ride assignment over per-ride
optimization strategies [35]. Consider a scenario where a passenger,
identified as 𝑁1, requests a ride at time 𝑡 . At that moment, a driver,
labeled as𝑀1, is available for assignment with associated deadhead
miles denoted as 𝑑1. Concurrently, another driver,𝑀2, has already
been assigned to passenger 𝑁2 at time 𝑡 . Now, if we consider a
situation where passenger 𝑁1 is willing to wait for a duration of Δ𝑡
until being assigned to𝑀2, it leads to a reduction in deadhead miles,
now represented as 𝑑2 < 𝑑1. However, this reduction in deadhead
miles comes at the expense of an increase in the passenger’s waiting
time, shifting from 𝑡1 to Δ𝑡 + 𝑡2.
Problem formulation. At a high level, the ride-assignment problem
is an extended version of the classic online bipartite matching prob-
lem where two sets of disjoint nodes represent riders and drivers.
However, modeling the topology constraints, i.e., determining the

set of available drivers and their corresponding assignment cost for
a new ride request, is highly challenging since other rides might
already occupy some drivers, where some of those drivers might
be available soon since they are close to finishing their current
ride. A rigorous formulation must carefully capture multiple com-
plex topology-constrained and time-coupled relationships between
riders and drivers. We formulate the emission-aware one-on-one
ride assignments within a ridesharing platform by considering a
high-level abstraction of the topology constraint of the problem in
an online setting. We consider a ridesharing platform comprising𝑀
drivers. Over a certain time horizon, 𝑁 ride requests are generated.
The objective of the ride assignment algorithm is to assign an avail-
able empty car to each request such that it minimizes the long-term
emissions from the total distance traveled. This encompasses rides
with passengers and the deadhead mile between dropping off one
passenger and picking up the next. We describe a simplified version
of the Emission-aware Ride Assignment Problem (ERAP) as follows.

[ERAP] min
𝑁∑︁
𝑛=1

𝑀𝑛∑︁
𝑚=1
(𝑒𝑡 (𝑛,𝑚) + 𝑒𝑑 (𝑛,𝑚)) 𝑥𝑛,𝑚

s.t.,
𝑀𝑛∑︁
𝑚=1

𝑥𝑛,𝑚 = 1, 𝑛 ∈ [𝑁 ],

vars., 𝑥𝑛,𝑚 = {0, 1}, 𝑛 ∈ [𝑁 ],𝑚 ∈ [𝑀𝑛],

where 𝑒𝑡 (𝑛,𝑚) are the trip emissions due to the assignment of pas-
senger 𝑛 to driver𝑚 and 𝑒𝑑 (𝑛,𝑚) represents the emissions due to
the deadhead mile for driver𝑚 to pickup passenger 𝑛. The routing
algorithms significantly impact these two terms. Also, 𝑥𝑛,𝑚 is de-
rived from a ride assignment algorithm and is a binary optimization
variable where 𝑥𝑛,𝑚 = 1 if𝑚 is assigned to 𝑛; 0, otherwise.
Balancing the maximum potential of emissions reduction and riders’
QoS. In ERAP, parameter 𝑀𝑛 denotes the set of available cars for
passenger 𝑛 that could include both currently available and soon-to-
be-completed cars for ride 𝑛. Hence,𝑀𝑛 is a crucial parameter that
balances the maximum potential of emissions reduction and riders’
waiting time (QoS), i.e., the more willingness to increase the waiting
time of ride 𝑛, the more cars will be eligible to be included in𝑀𝑛 .
In our algorithm in Section 3.2, we define a threshold parameter
𝜙 that determines the set of available cars for a new ride, and by
adjusting parameter 𝜙 , the set of available cars𝑀𝑛 changes; hence,
the algorithm could be tuned to achieve a desired trade-offs between
emission reduction and user waiting time.

Lastly, we note that one could implicitly leverage parameter𝑀𝑛

to impose driver’s equity constraints. That is, there could be another
separate module that records the equity-related metrics for drivers,
e.g., deadhead-to-trip ratio and the number of assigned trips, and
then based on the equity status of each driver, the available cars for
the new ride might be determined, e.g., the driver equity module
may exclude the drivers with a large number of previously assigned
rides to make the ride assignment equitable for other available
drivers. That said, we emphasize that our current modeling does
not explicitly model the optimization of equity from the drivers’
perspective. Designing equitable ride assignments for drivers is a
significant further direction of our work.
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3 RIDE ASSIGNMENT ALGORITHMS
In Section 3.1, we first present an offline ride assignment algorithm,
ERA, designed to assign rides to minimize total emissions near op-
timally. While ERA is not a practical algorithm, it can show the
maximum potential of emissions reduction with the sole objective
of reducing the emissions. In Section 3.2, we then present TORA,
an online emission-aware ride assignment algorithm that balances
total emissions and the average passenger waiting time.

3.1 ERA: An Offline Emission-aware Ride
Assignment Algorithm

ERA is an offline algorithm (Algorithm 1) designed to assign a set
of 𝑁 riders to a fleet of 𝑀 drivers with the primary objective of
minimizing emissions. The algorithm initialization phase (Lines 1-3)
starts with an empty assignment for all 𝑀 drivers. Subsequently,
the algorithm sequentially considers each passenger 𝑛 and gener-
ates all possible assignments of that passenger to the𝑀 available
drivers (Line 7). Importantly, the new assignments do not modify
assignments to previous passengers.
Algorithm 1: ERA(𝑁 ,𝑀)

1 Initialize𝑄𝑖 = {}, for 𝑖 ∈ [1, 2, ..., 𝑀 ];
2 initial_assignment = {𝑄𝑖 | ∀𝑖 ∈ [1, 2, ..., 𝑀 ] };
3 A = {initial_assignment};
4 for 𝑛 ∈ [1, 2, ..., 𝑁 ] do
5 A′ = {};
6 for 𝑎 ∈ A do
7 children = Children(𝑎,𝑛) ;
8 A′ ← A′ ∪ children;
9 emissionmin =Minimum emission of assignments in A′;

10 A ← {𝑎 |𝑎 ∈ A′, emissionℎ (𝑎) ≤ emissionmin}

The algorithm relies on a heuristic function denoted as
emissionℎ (𝑎) to estimate the emission associated with a specific
assignment and calculates the minimum emissions in assigning all
passengers to the drivers. Specifically, for any assignment 𝑛 →𝑚

in the partial assignment 𝑎, the passenger 𝑛 is obligatorily assigned
to driver 𝑚. We conduct an extensive numerical analysis ERA to
define a heuristic function, emissionℎ (𝑎). It estimates the emissions
generated by the system based on the assignments made in a partial
assignment 𝑎. The function estimates the emissions by calculating
the deadhead distance for each driver. The deadhead distance is
the distance between the drop-off location of a passenger and the
pick-up location of the next passenger assigned to the same driver.
In addition, the algorithm takes into account the lower bound for
the deadhead distance of any unassigned passenger 𝑛. This lower
bound is calculated by finding the minimum distance required to
drive to the pick-up location of passenger 𝑛 from the drop-off lo-
cation of any passenger that arrived before 𝑛 in the assignment
sequence. By deriving the lower bound on the minimum required
deadhead distance for each unassigned passenger and leveraging
the known emission rate per mile for each driver, the algorithm can
effectively estimate the minimum emission for each ride. The total
estimated emission is calculated as the sum of the emissions associ-
ated with the assigned passengers and the minimum emissions of
the unassigned passengers, all for the partial assignment 𝑎.

Figure 2:Opportunity analysis: Comparison of emissions from
deadhead miles and waiting time for the default ride assign-
ment and our offline emission-aware ride assignment.

Finally, the algorithm keeps the assignments with the lowest
estimated emission and starts branching from those (Lines 10-11).
In this algorithm, Children(assignment𝑛−1, 𝑛) returns a set of pos-
sible assignments of passenger index 𝑛 to drivers without changing
any previously assigned passengers, assignment𝑛−1, (Line 7). In
Figure 2, we present emissions from the deadhead miles and passen-
ger waiting times for the current assignments in the dataset and the
new assignments based on our emission-aware offline algorithm.

We note that the computational complexity of the ERA algorithm
is substantial, rendering it impractical to seek near-optimal solu-
tions for datasets with hundred thousands of trips. Consequently,
for this preliminary feasibility study, we have limited our exper-
imentation to a curated dataset comprising 142 samples. We ran-
domly sampled 142 trips, completed by 14 unique drivers, from the
RideAustin dataset [48] (detailed on Section 6.1) on December 2,
2016. The left 𝑦-axis presents the total carbon emissions, measured
in grams of carbon dioxide equivalent (g.CO2eq), for the deadhead
miles of all the trips 2. The 𝑦-axes on the right show the waiting
time (seconds), measured as the time period between a passenger
posting the request and the driver picking up at different scales. Our
results demonstrate that our proposed ERA algorithm, albeit offline
with complete knowledge of future rides, can reduce the deadhead
miles emissions by 48.7% (from 626gCO2eq to 321gCO2eq). Impor-
tantly, the average waiting across all trips also decreased by 8.5%
(from 330s to 302s) as ERA reduced the deadhead miles. Still, the
longest waiting time increased by 2.94× to almost 94 minutes from
the 32 minutes observed for the default ride assignment.

The above initial results show the potential of carbon emissions
reduction by changing the assignment objective. However, ERA is
an offline algorithm; hence, it is not practically a relevant choice.
Hence, in what follows, we present TORA as an online and practical
algorithm for emission-aware ride assignment.

3.2 TORA: An Online Threshold-based Ride
Assignment Algorithm

TORA is an online ride-assignment algorithm that controls the trade-
off betweenwaiting time and vehicle carbon emissions. Tominimize
waiting time for the passenger 𝑛, TORA first finds the closest avail-
able driver to the passenger and then compares the distance and

2This measurement is derived frommultiplying the miles traveled by the fuel efficiency
of the vehicle, denoted in grams of CO2 emitted per kilometer (gCO2/km). See the
implementation section for additional details.
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deadhead emission produced by other available drivers with the
closest driver. TORA calculates the Emission-to-Distance (E2D) ratio
for every driver and selects the appropriate driver for the passenger
based on E2D values. More specifically, E2D is defined as the ratio
between the difference of the deadhead emission of a driver and
the deadhead emission of the closest driver over the difference of
the distance of the passenger to the two drivers, i.e.,

E2D(𝑚,𝑐) := 𝑒𝑑 (𝑛, 𝑐) − 𝑒𝑑 (𝑛,𝑚)
distance(𝑚) − distance(𝑐) , (1)

where distance(𝑐), and distance(𝑚) show the distance of passenger
𝑛 to the closest driver 𝑐 and driver𝑚.

The pseudocode for TORA is outlined in Algorithm 2. It leverages
a parameter, 𝜙 , to balance the trade-off between reducing passenger
waiting time and minimizing vehicle deadhead emissions. Initially,
TORA identifies the closest available driver and computes E2D value
for other available drivers (Lines 1-2). Next, it picks a driver with
the highest E2D ratio such that E2D > 𝜙 × 𝐸0, where 𝐸0 are the
emissions for a baseline vehicle over a unit distance trip. If such a
driver exists, TORA selects and returns it (Lines 6-7). Otherwise, it
defaults to assigning the closest available driver.
Algorithm 2: TORA(n, 𝜙)
1 𝑐 ← closest available driver to n;
2 𝑚 ← argmax𝑚′ E2D(𝑚′, 𝑐 ) ;
3 if 𝜙𝐸0 < E2D(𝑚,𝑐 ) then
4 return𝑚;
5 else
6 return 𝑐 ;

The underlying concept of this algorithm is straightforward: it
replaces the nearest driver with a more distant one if the latter emits
𝜙𝐸0 fewer emissions per additional unit distance traveled. The lower
values of 𝜙 prioritize drivers with lower emissions, whereas higher
values prioritize selecting the closest driver, potentially increasing
emissions. To better understand how different values of 𝜙 impact
the passenger’s waiting time, we can calculate the upper bound on
the distance of driver𝑚 to the passenger when TORA is willing to
replace the closest driver 𝑐 by𝑚. From the definition of E2D(𝑚,𝑐)
in Equation 1, TORA replaces closest driver 𝑐 by driver𝑚 if

𝜙𝐸0 <
𝑒𝑐 · distance(𝑐) − 𝑒𝑚 · distance(𝑚)

distance(𝑚) − distance(𝑐) , (2)

where 𝑒𝑐 and 𝑒𝑚 denote the unit-distance emission for the driver 𝑐
and𝑚. By rearranging Eq. (2), TORA replace driver 𝑐 with driver𝑚
if

distance(𝑚)
distance(𝑐) <

𝑒𝑐/𝐸𝑜 + 𝜙
𝑒𝑚/𝐸0 + 𝜙

, (3)

where the ratio of distance(𝑚)/distance(𝑐) approximates the ratio
of waiting time for the passenger with driver𝑚 over driver 𝑐 . Eq. (3)
shows that TORA limits the distance of the lower emission driver
based on its and closest driver’s unit-distance emissions.

4 ROUTE CHOICE TRADE-OFFS
In this section, we study the impact of different route options on the
total distance, trip duration, and emission produced during the trip.
We consider the shortest route, fastest route, and most fuel-efficient
route as the three possible choices of driver to travel from pick-up

to drop-off location of passenger. We collected the data for the three
route options — distance, duration, and fuel consumption — for
44,794 trips using the Google Maps API [24]. In our analysis, we
categorize trips into short- (<1mile), medium-(1–10miles), and long-
distance (>10 miles) trips (based on the length of shortest route) to
emphasize the impact of different routing options on different trips.
Our three route options also give us three metrics for our analysis:
distance traveled, time taken, and emissions produced. We choose
one route option as a baseline (optimize one metric) and evaluate
how worse off the other two routes are based on the baseline metric
for all trip categories.

In Figure 3(a), we examine the percentage increase in distance for
the fastest and fuel-efficient route options when compared to the
baseline shortest distance route (𝑦-axis) for the three trip categories
(𝑥-axis). The fastest route takes a longer route, probably to avoid
traffic congestion, by up to 7.5%, depending on the length of the trip.
The fuel-efficient route needs to balance the savings from traveling
the shortest distance and the cost of idling in a traffic jam; it drives
longer highly judiciously. Figure 3(b) shows the increase in trip
emissions for the shortest distance and fastest routes. The increase
in emissions is smaller than the increase in distance we observed
in Fig. 3(b). Also, the actual magnitude of increase even for the
fastest trip is around 4%. The differences may further diminish in
practice, especially in cities where traffic patterns change quickly
and unexpectedly. Finally, in Figure 3(c) we evaluate the time cost
of the shortest distance and fuel-efficient route options. As we
observed before, shortest distance routes are most likely congested,
and choosing them would cost up to 6% more time than the shortest
duration route. Since the fuel-efficient route option travels longer
distances but avoids congestion, its increase in time is smaller.

Our analysis showed that the choice of route had varying impacts
on trip duration, distance, and emissions, with the shortest, fastest,
and fuel-efficient routes exhibiting different trade-offs.
Key takeaways. Our analysis yields a few interesting and surprising
insights. It shows that choosing the fuel-efficient route may not always
yield huge fuel savings. However, since the distance and time increase
for the fuel-efficient trip are minute, <1% and <2.5%, respectively, the
small savings do not come at a huge cost. Also, the results are subject
to local road networks, traffic conditions, and driver habits.

5 E2-RIDEKIT TOOLKIT
Our work on developing emission-aware ride assignment and rout-
ing algorithms requires ridesharing datasets to include carbon emis-
sion information for the deadhead miles and individual trips, and
equity information on the drivers and riders. However, no existing
ridesharing datasets contain such information. Augmenting the ex-
isting datasets with emission and equity information requires solv-
ing multiple challenges. In this section, we present the design and
implementation E2-RideKit 3 for augmenting ridesharing datasets
as an independent contribution. To make the toolkit complete and
independently useful, we implement several additional function-
alities not used directly for our algorithmic work in this paper.
However, they are of independent interest for emissions research
in the ridesharing ecosystems.

3https://github.com/Mahsahebdel/e2_ridekit
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(a) Impact on Trip Distance (b) Impact on Trip Emissions (c) Impact on Trip Duration
Figure 3: Average increase in distance (a), emission (b), and duration (c) for different routing algorithms to the optimal routes for
short, medium, and long-distance trips for three trip categories in our analysis.

5.1 E2-RideKit Design
The design of E2-RideKit needs to solve three key challenges:
(1) building vehicle- and congestion-aware emission models for
internal combustion engine (ICE) powered vehicles, (2) modeling
congestion-aware discharging and location-aware charging mod-
els for Electric Vehicles (EVs), and (3) defining, quantifying, and
adding missing information on equity-related metrics. We solve
these challenges as a part of our design, which we describe next.
1. ARCHITECTURE. The high-level architecture of E2-RideKit
consists of three major modules, as shown in Figure 4. The three
major modules are (i) Ride Enhancer module, (ii) Emission
Estimator module, and (iii) Equity Embedder module.
Ride Enhancer. The goal of this module is to augment the per-
ride/trip information from an existing dataset with missing infor-
mation, if any. For example, a dataset may only provide the pickup
and drop-off coordinates without sharing information on the actual
route taken by the driver. Since we need to estimate per-ride emis-
sions, which depend on the route the driver takes, Ride Enhancer
module can leverage a navigation API to generate trajectories. Sim-
ilarly, the congestion model inside the Ride Enhancer module is
responsible for estimating congestion during the trip since it is
one of the key factors that affect the fuel efficiency of vehicles,
which impacts the carbon emissions for a given trip. Note that Ride
Enhancer module operates on all rides and does not differentiate
between rides from an ICE-powered vehicle and an EV.
Emission Estimator. This module is the heart of the E2-RideKit
as it estimates the carbon and other GHG emissions for various
aspects of each ride. For example, it will estimate the emissions
during the actual trip with the passenger and emissions from dead-
head miles that the driver had to undertake to pick up a new cus-
tomer. Since the car make/models, fuel types, and efficiencies of
ICE-powered vehicles and EVs are significantly different, we use
separate modules for estimating their emissions. Based on the ve-
hicle type, EV or ICE-powered, we use data from either carbon
information services such as electricityMaps [1] and Watttime [4]
or existing vehicle emissions datasets [54].
Equity Embedder. An equally important and the most challenging
module is the Equity Embedder module that embeds socioeco-
nomic and demographic information for the drivers and the riders.
Due to privacy concerns, dataset collectors and maintainers do
not release information that can reveal the identity of the riders
or passengers. As a result, this information needs to be estimated

at a coarse granularity using publicly available information using
resources such as US Census Bureau [53]. Specifically, we use the
Geocode API [3] to collect demographic data such as race, popula-
tion, and median income. The data is provided by the U.S. Census
Bureau and is made available by census block, i.e., the smallest
geographical unit for which the U.S. Census Bureau collects and
provides statistical data. In some cases, the data may not be for
the same year as the ride-sharing dataset. For example, for many
locations in the US, 2020 is the most recent year with available
census data [12]. However, this should not be a significant issue as
the demographics of cities, or even blocks, only change over the
course of many years. Using per-ride information, our module op-
tionally estimates coarse information on which segment of the city
the driver or rider lives. This information can be gleaned from past
datasets for the regular drivers and riders using methods such as
K-means clustering [41]. We release this module with a disclaimer
about the potential inaccuracies in the embedded information.
2. WORKFLOW.We next describe the workflow of E2-RideKit
when using it to augment an existing ridesharing dataset. We first
split the input dataset into two segments that contain information
on individual rides and the other segment containing information
on all the drivers and riders if available.

If the dataset does not provide trajectory information, we lever-
age navigation APIs with generative modeling to estimate trajec-
tories for each ride, i.e., the route between pickup location and
destination. This trajectory information is needed to estimate the
trip emissions based on the vehicle used, route taken, and distance
traveled. We next adjust the trip emissions based on the estimated
travel time index (TTI), which compares the travel time of a given
trip with the typical time for the same trip and represents a good
proxy for traffic congestion. By leveraging the appropriate emission
module, this step handles both ICE-powered vehicles and EVs.

To solve the second challenge, when considering discharging,
we will leverage the same approach as the first challenge. To model
the charging patterns and constraints, we will leverage publicly-
available information on the charging station locations [46], the
ratings of the available chargers [46], and the carbon intensity of
electricity supply using services such as electricityMaps [1] and
Watttime [4]. To solve the final challenge, we will create a meta-
dataset that provides the distributions of equity-related metrics
augmented with additional information on socio-economic factors
from U.S. Census Bureau [53]. Table 1 lists the additional per-trip
and meta fields that E2-RideKit add to our example dataset.
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5.2 E2-RideKit Implementation
In this section, we describe the implementation of E2-RideKit and
the models and datasets we use for our case study, as explained in
the following. We combine multiple additional datasets as a part of
our implementation and describe them next.
1. Car emissions dataset. To model emissions from the ICE-
powered vehicles in the dataset, we use the Canada Car Emissions
dataset [54]. This extensive and reliable resource provides a com-
prehensive overview of CO2 emissions data for various vehicles.
This dataset covers a period of 7 years and is sourced from the
official open data website of the Canadian government. It consists
of detailed information on different aspects and characteristics of
26,075 unique vehicles. The dataset primarily focuses on essential
factors such as vehicle’s make, model, year, and carbon emissions,
which are fundamental in understanding CO2 emissions. However,
it goes beyond these key attributes and includes valuable informa-
tion such as fuel type, engine size, transmission type, and other
relevant features. Easy access to these additional details through the
toolkit will enable researchers and analysts to gain deeper insights
into the relationship between car attributes and carbon emissions,
facilitating a more comprehensive dataset analysis.
2. Carbon emissions dataset. ElectricityMaps [1] and Watttime [4]
are valuable services that provide essential information regarding
the carbon intensity of electricity supply across different locations.
This information is presented as average and marginal hourly val-
ues, which can vary depending on the specific location and time.
The availability of this data is particularly beneficial for modeling
the carbon intensity of electricity supply during the charging of
EVs. To accurately model the charging patterns and constraints
for EVs, publicly available data on charging station locations and
charger ratings are utilized. This data aids in estimating the charg-
ing patterns of EVs and determining the time required for a vehicle
to be fully charged. However, it is not always feasible to determine
the exact time at which an EV is charged. In such cases, a proxy
approach is employed, where the daily average carbon intensity
value of the electricity supply at the location where the vehicle is
charged is utilized to estimate the charging time. By adopting this
approach, an estimation of the carbon intensity of the electricity
supply at the time of charging is derived and incorporated into
the analysis. By leveraging the information from electricityMaps,
WattTime, and the data on charging station locations and charger
ratings, researchers and analysts can enhance their analysis of the
environmental impact of EVs and their charging patterns. This in-
tegration allows for a holistic understanding of the relationship
between EV charging, the carbon intensity of electricity, and its
implications for sustainability and environmental considerations.
3. Traffic congestion model. The traffic congestion model is a demand
modification and traffic simulation process. The model aims to
estimate changes in travel demand and traffic patterns. We next
detail the demand modification and traffic simulation processes.

In the demand modification process, we adjust the Origin-
Destination (O-D) matrix to reflect changes in travel demand result-
ing from various factors. This requires data-derived inputs, such
as trip proportions associated with specific Traffic Analysis Zones
(TAZ) and the proportion of dedicated tours for specific purposes.

Ride Enhancer Emissions Estimator

Equity 
Embedder

EV 
Module

Trajectory 
Module

Congestion 
Module

Google Maps 
API Key

Congestion 
Model

Detailed 
Ride Info
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Carbon 
Emissions Info

Vehicle Mileage
Dataset

Per-ride 
Info

Per-rider & 
per-driver info

Emission-aware
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Equity-aware rider 
& driver datasetCensus 

Dataset output

Figure 4: The high-level architecture, various components, and
workflow of E2-RideKit.

Table 1: Additional Fields Added to the RideAustin Dataset.

Trip related fields fuel efficiency emissions (deadhead & trip) congestion index
EV (yes/no) demographics (rider & driver)

Meta fields EV trajectories electricity carbon intensity charger location
charger type charging/discharging model

Users can also set additional simulation parameters, like the pen-
etration and substitution rates. To incorporate changes in travel
patterns, we use a Monte Carlo simulation, which accounts for
uncertainties in determining trip categories and subsequent desti-
nations by generatingmultiple potential scenarios. After identifying
the affected trips, the OD matrix is modified to reflect the changes
introduced in the simulation.

The traffic simulation process involves using the Vehicle Hours
Traveled (VHT) metric to understand and quantify the impact of
transportation activities on congestion. VHT measures the total
travel time of vehicles on the road network during a specific pe-
riod, considering both the number of vehicles and the duration
of their trips. To calculate VHT, we use Static Traffic Assignment,
which assigns trips from an Origin-Destination (OD) matrix to the
transportation network, considering travel demand, road capacities,
and traffic conditions. The goal is to distribute the trips across the
network in a way that reflects realistic travel patterns and estimates
travel times for the assigned trips. The resulting network data pro-
vides valuable information on updated link speeds, travel times,
and vehicle volumes, enabling the calculation of VHT by summing
up the travel times on each link. By comparing VHT values and
analyzing different scenarios, researchers can assess the impact of
transportation activities on congestion, aiding in the understanding
of traffic dynamics, evaluation of interventions, and development
of strategies to mitigate congestion-related issues.

6 EXPERIMENTAL EVALUATION
This section provides a comprehensive experimental study to evalu-
ate the deadhead, total emission, and waiting time of a ridesharing
platform under ride assignment of TORA with different 𝜙 values
and different routing algorithms explained in Section 4. The key
questions for the evaluations and our findings are outlined below.
Q1 How does TORA impact the deadhead emissions and waiting times

when the routing algorithm remains unchanged? We find that
TORA can improve the deadhead emission significantly with a
cost of slightly increasing the waiting time (Key takeaway 1).
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Q2 How does TORA affect the equity among drivers with varying
vehicle emissions? Our analysis reveals that reduction in emis-
sions requires sacrificing equity by assigning more rides to
low-emission vehicles (Key takeaway 2).

Q3 How do the TORA and routing algorithms compare regarding their
impact on the emission of ridesharing systems? We find that the
impact of the ride assignment algorithm on the emission and
waiting time of the ridesharing system is substantially more
than the impact of routing algorithms (Key takeaway 3).

6.1 Experimental Setup
We outline the characteristics of the ridesharing dataset we use,
various parameters that we vary in our experiments, and the met-
rics we use to evaluate the efficacy of our approach in reducing
emissions and ensuring equity.
Ridesharing dataset. RideAustin, a non-profit ridesharing com-
pany based in Austin, Texas, has released a dataset encompassing
around 1.5 million trips spanning a 10-month period across 2016
and 2017 [48]. During this period, no other major ridesharing plat-
forms like Uber or Lyft operated in Austin. The dataset contains
comprehensive trip-specific information, including the trip’s start
and end times, geographical coordinates for both pick-up and drop-
off locations, the vehicle’s make and model, distance covered before,
during, and after each trip, and unique identification numbers for
the driver and passenger.

In our experiments, we use RideAustin dataset consisting of trips
between December 1, 2016, and December 10, 2016. This subset
comprises 44,794 ridesharing trips conducted by 1,406 drivers. We
augment this dataset with emissions information using E2-RideKit,
and the additional dataset explained in Section 5. We categorized
the vehicles emitting less than 135 g.CO2eq/km as low-emission
vehicles (LEVs), and created three more variants of the dataset by
randomly selecting 5%, 10%, and 20% of the vehicles which are not
categorized as a low-emission and converting them into electric
vehicles (EVs), yielding three addional datasets with 10%, 15%, and
25% low-emission vehicles. During our experiments, we set the unit
distance emission equivalent of EVs to be 63.35 g.CO2eq/km4.
Baseline strategies and parameter ranges. For our ride assign-
ment algorithms, we use two baseline ride assignment strategies:
1) default assignment as presented in the RideAustin dataset and
2) shortest distance assignment that assigns the closest driver to
the passenger. The second assignment strategy is emulated as an
extreme case of TORA when 𝜙 approaches infinity. We use three
variants of TORA with 𝜙 values of 0.1 (representing an emissions-
prioritized assignment), 1 (roughly representing emissions- and
-waiting-time-aware assignment), and 7.5 (representing a waiting-
time-prioritized assignment) for our ride assignment strategies. For
routing, we used three routing strategies: the shortest, the fastest,
and the fuel-efficient, as explained in Section 4.

For our experimental parameters, we vary the values of 𝜙 be-
tween 0.001 and 18. We set the value of 𝐸0 to 63.35 g.CO2eq/km,
which is equal to the unit-distance carbon emission for an EV. It is
worth noting that scaling up the value of 𝐸0 is equivalent to scaling

4We used the Tesla Model Y as a prototype EV, which has an energy efficiency rating
of 26 kWh/100mi. We used the average carbon intensity value for Austin, Texas, which
is 408 g.CO2eq/kWh to compute the unit distance emissions.

(a) Default Assignment (b) Shortest Distance

Figure 5: Percentage reduction in deadhead miles emissions
on 𝑦-axis compared to the (a) default assignment in the
RideAustin dataset and (b) shortest distance driver assign-
ment, as a function of 𝜙 on the 𝑥-axis for different LEV frac-
tions. Lower values of 𝜙 generally yield higher reduction.

down the value of 𝜙 . For example, the ride assignment of TORAwith
𝜙 = 10 and 𝐸0 = 63.35𝑔.𝐶𝑂2𝑒𝑞/𝑘𝑚 equals to the ride assignment
of TORA with 𝜙 = 5 and 𝐸0 = 126.7𝑔.𝐶𝑂2𝑒𝑞/𝑘𝑚.
Performance and equity metrics. We assess ride assignment
strategies using three performance metrics: passenger waiting time,
deadhead emissions, and overall ridesharing emissions.

To analyze the equity implications of the ride assignments algo-
rithms, we leverage the parameter 𝜙 . Besides the previous LEVs, we
introduce another category of high-emission vehicles (HEVs) with
lower than 11.7 liters per 100km (20mpg). We report the fraction of
trips assigned and the average deadhead-to-trip distance ratio for
the two categories. For an equitable outcome, the values for both
metrics should be similar across vehicle categories.

6.2 Impact on Emissions and Waiting Times
In this section, we present the outcomes of our experiments, which
shed light on the intricate interplay of ride assignment algorithms,
routing strategies, and various dataset configurations. These results
offer valuable insights into the performance trade-offs inherent in
ridesharing platforms. We report our results by varying the thresh-
old values (𝜙) for different datasets, including the original vehicle
dataset and synthetically generated datasets with the injection of
10%, 15%, and 25% low-emission vehicles (LEVs). The objective is
to investigate the impact of threshold parameter 𝜙 on two pivotal
factors: the reductions in deadhead emissions (in Figure 5) and the
increase in waiting times of the riders (in Figure 6).

The results in Figure 5 show that smaller values of threshold
value 𝜙 lead to greater improvements in deadhead emissions. Ad-
ditionally, at a fixed threshold value, a higher percentage of low-
emission vehicles results in comparatively greater improvements in
deadhead emissions. Regarding waiting times, as shown in Figure 6,
a smaller threshold value increases the relative waiting time for
both the default assignment and the shortest distance assignment
strategies. Also, as 𝜙 increases, the relative increase in waiting time
decreases. We note that with higher values of 𝜙 , our results demon-
strate a negative increase in waiting time, i.e., a reduction in waiting
time, compared to the default ride assignment in the RideAustin
dataset. This happens because the default assignment does not
always assign the closest drive to the passenger, and there is an
opportunity to reduce waiting time without increasing emissions.
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(a) Default Assignment (b) Shortest Distance

Figure 6: Percentage increase in waiting time on the 𝑦-axis
compared to the (a) default assignment in the RideAustin
dataset and (b) shortest distance driver assignment, as a func-
tion of 𝜙 on the 𝑥-axis for different LEV fractions. Higher
values of 𝜙 generally yield lower waiting time.

Key takeaway 1. There is a trade-off between reducing the average
deadhead emission and reducing the average passenger’s waiting
time under the ride assignment of TORA, e.g., while smaller threshold
values substantially reduce the emissions, it comes at the expense of
increased waiting time of riders.

6.3 Equity Implications
Depending on how we look at the problem and who we ask, the
definition of equity can significantly change. In our context, we
define it as an equitable distribution of rides across all vehicles. Since
emission-aware ride assignment strategies favor high-efficiency
vehicles, they can starve drivers with low efficiency, which typically
belong to low-income drivers. As a result, there is a tradeoff between
reduction in emissions and equity. In this section, we navigate the
tradeoff using various values of 𝜙 . Note that any other definition
of equity, such as the waiting time experienced by riders from low-
income communities vs. affluent neighborhoods, can be explored
using the information augmented into the dataset by E2-RideKit.

As illustrated in Figure 7, adjusting the threshold value results
in a trade-off: an increase in the threshold leads to a decrease in
the percentage of trips assigned to LEVs, while the percentage
of rides assigned to HEVs increases. This implies that a higher
threshold favors HEV rides, a trend consistent across datasets with
varying LEV percentages. Intriguingly, our results also demonstrate
that a higher percentage of LEVs within a dataset corresponds to
a greater percentage of trips completed by LEVs, irrespective of
the threshold value. Notably, the original dataset, across a range
of threshold values from 0.001 to 18, assigned between 7.6% to
16.6% of rides to LEVs. These percentages shifted to 20.7% to 66.8%,
25.5% to 56.2%, and 39.4% to 65.8% for datasets containing 10%, 15%,
and 25% LEVs, respectively. This underscores the pivotal role of a
higher proportion of LEVs in achieving environmentally friendly
ridesharing outcomes within defined criteria.

A distinct facet of our investigation involved analyzing the ratio
between deadhead and total trip distance, known as the deadhead-
to-trip ratio. Figure 8 showcases the results as the threshold values
vary for LEVs and HEVs. As expected, an increase in the threshold
value is associated with a decrease in the deadhead-to-trip ratio,
consistent across scenarios with a fixed percentage of LEVs.

(a) LEVs (b) HEVs
Figure 7: Fraction of rides assigned on 𝑦-axis to (a) LEVs and
(b) HEVs, as a function of 𝜙 on the 𝑥-axis for different LEV
fractions. At lower 𝜙 values, TORA assigns more rides to LEVs.

(a) LEVs (b) HEVs

Figure 8: Average deadhead-to-trip distance ratio on 𝑦-axis
for (a) LEVs and (b) HEVs, as a function of 𝜙 on the 𝑥-axis for
different LEV fractions. At higher 𝜙 values, the deadhead-to-
distance ratio for LEVs decreases but increases for HEVs.

Interestingly, our results demonstrate that raising the threshold
for a fixed percentage of LEVs is linked to an increased deadhead-
to-trip ratio for HEVs. Additionally, for a fixed threshold value, a
higher percentage of LEVs results in a lower deadhead-to-trip ratio,
reflecting improved efficiency. These observations emphasize the
intricate relationship between ride assignment parameters and the
efficiency of trip assignments in diverse environmental contexts.
Results show that the deadhead-to-trip ratio for LEVs varies be-
tween 31.8% to 35.7% for original vehicles when threshold varies
between 0.001 to 18 while these ranges for datasets with 10%, 15%,
and 25% LEVs were 32.8% to 37.0%, 32.4% to 34.0%, and 31.9% to
34% respectively.
Key Takeaway 2. Under the ride assignment of TORA, reduction in
deadhead emissions requires sacrificing equity among drivers. In this
case, a greater fraction of passengers get assigned to LEVs, and their
deadhead miles would be longer.

6.4 Ride Assignment and Routing Comparison
Finally, we examine the impact of ride assignments and routing
options on total emissions and waiting times, considering datasets
with varying percentages of LEVs. By leveraging data from the
Google Maps API, including travel times for different route options,
the shortest (S), the fastest (F), and the fuel-efficient (E), explained
in Section 4, we evaluated the performance of TORA with three dif-
ferent values of 𝜙 : 0.1, 1, and 7.5. Our results, illustrated in Figure 9,
indicate when we increase the threshold value, we observe a de-
crease in the percentage increase in waiting time. Higher thresholds
are associated with a reduced percentage increase in waiting times
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(a) Original Vehicles (b) 10% LEVs (c) 15% LEVs (d) 25% LEVs

Figure 9: Percentage of improvement in total emission as a function of percentage of increase in waiting time assignment for
TORA using three different route options (Shortest (S), Fastest (F), and Fuel Efficient (E)) and varying 𝜙 values: 0.1, 1, and 7.5.

and a corresponding decrease in improvements in deadhead emis-
sions. Conversely, lowering the threshold value amplifies waiting
time increases and enhances the reduction of deadhead emissions.
These findings illuminate the intricate dynamics between ride as-
signment and routing strategies and their consequential effects on
emissions and waiting times within ridesharing systems. In addi-
tion, results reveal that the impact of ride assignment (different
threshold values) on the total emission and waiting times is substan-
tially greater than that of routing algorithms. Note with original
vehicles, changing the threshold value from 7.5 to 0.1 can improve
the total emission up to 3.5%, and increase the waiting time up
to 71.2%. In contrast, for a fixed ride assignment algorithm, the
maximum impact of the routing algorithm on the improvement of
emission and increase in waiting time is 2.6%, and 10.1%.
Key Takeaway 3. The impact of ride assignment algorithms on the
emission and waiting time of ride sharing service is significantly more
than the impact of routing algorithms.

7 RELATEDWORK
Prior work on improving ride-sharing services has mainly focused
on investigating the factors affecting passenger demand and scaling
drivers’ availability to match demand by leveraging either theoreti-
cal approaches or empirical and ML-based approaches.
Theoretical approaches. Feng et al. [21] present a novel two-stage
stochastic matching model for ride-hailing platforms, addressing
uncertainty in rider and driver availability. Li et al. [38] study the
strategies taken by taxi drivers for finding passengers from a large-
scale taxi GPS dataset. Vazifeh et al. [55] propose an optimization-
based approach to minimize the fleet size in on-demand urban
mobility services. Zha et al. [61] analyze the ride-sourcingmarket by
leveraging a model that captures the matchings between customers
and drivers through a matching function. Bai et al. [8] and Feng
et al. [20] propose a model for an on-demand service platform
to estimate the passenger’s queuing time or their matching time.
Abkarian et al. [6] present a model that aims to balance the trade-
off between waiting times for reservation-based and on-demand
users while minimizing the overall deadhead mileage driven by
the vehicles in the fleet. Other studies analyze ride-sharing for
deadheading, cost, energy consumption, and environmental impact
through modeling, simulations, and data analytics [9, 45, 58].

Empirical and ML-based approaches. Moreira-Matias et al. [43]
devise amethod to predict the short-term distribution of taxi passen-
gers using streaming data from taxis operating in Porto, Portugal.
Iacobucci et al. [28] investigate the potential demand for Shared Au-
tonomous Vehicles (SAVs) or robotaxis using a scalable simulation
framework. This study explores the impact of SAVs on travel behav-
ior, considering factors such as fare, waiting times, and real-time
demand. Jungel et al. [31] focus on the development of online con-
trol algorithms for autonomous mobility-on-demand systems. They
propose a hybrid combinatorial optimization enriched machine
learning pipeline that learns online dispatching and rebalancing
policies from optimal full-information solutions.

Lavieri et al. [37] use an Austin-based ride-sharing dataset to
present two statistical models: (i) a spatially lagged multivariate
count model to estimate the number of trips generated in a spe-
cific zone during weekdays and weekends and (ii) fractional split
model to identify the key features of zones where a majority of
ride-sharing trips start. In another study, Liu et al. [39] analyze
the temporal and spatial patterns of riders’ requests and the ride
services they choose. They use Random Forests to predict the travel
demand of these ride-sharing services. Ke et al. [32] propose a
novel spatio-temporal deep learning approach that uses a convolu-
tional neural network (CNN) to model the spatial distribution of
demand and a long short-term memory (LSTM) network to model
the temporal patterns in ride demand. Other studies have also used
LSTM networks to predict demand behaviors across both spatial
and temporal dimensions [36, 56, 59]. While these studies focus on
improving the performance of ride-sharing services, they do not
explicitly target reducing deadhead miles. To the best of our knowl-
edge, the most relevant work to our proposal is done by Kontou
et al. [35]. Authors show up to 82% reduction in trip-level dead-
head miles by leveraging hour-ahead trip demand predictions and
a heuristic approach to driver assignment. However, their focus on
reducing trip-level deadhead miles may not always lead to reducing
system-wide deadhead miles and emissions that, in addition to the
number of miles, depend on the fuel efficiency of vehicles and traffic
conditions. Furthermore, they do not consider equity metrics from
the rider’s or driver’s perspective.

Our paper is the first to take a holistic approach toward design-
ing emission-aware ride assignment optimizations that explicitly
target reducing emissions from deadhead miles, embed equity con-
siderations into the ride assignment process, and consider electric
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and low-emission vehicles as a part of ride-sharing fleets. In addi-
tion, our solution approach is a data-driven algorithmic design that
relies on a straightforward greedy algorithm.

Lastly, we note that there is extensive literature on optimizing
carbon emissions and energy consumption for vehicle routing. The
existing emission-optimized routing algorithms, e.g., [16, 40, 60],
mainly model the problem as extended variants of the classic trav-
eling salesman problem under different settings, e.g., joint electric
vehicle charging and routing [17, 23, 42, 51], joint routing and speed
optimization [16, 52], and environmental impacts of the routing
decisions [10, 19]. In this work, however, we used off-the-shelf
routing algorithms from Google Map API. An interesting future
direction of our work is to combine the above routing algorithms
with the ride assignment policies presented in this paper.

8 CONCLUDING REMARKS
In this paper, we presented equity- and emission-aware ride as-
signment and routing approaches to reduce the overall emissions
of the ridesharing platform. We then presented E2-RideKit as a
toolkit that combines multiple datasets needed for the performance
evaluation of our algorithms. Future research should focus on ex-
plicitly integrating equity considerations into the ride assignment
optimization problem. This involves developing models that ac-
count for various dimensions of equity, such as fairness in service
access and drivers’ treatment, to align the optimization process with
broader social goals. Another critical area for further exploration
is a thorough analysis of the simple online algorithm used in this
study. Investigating its robustness, scalability, and sensitivity to dif-
ferent conditions will provide valuable insights, enabling potential
refinements and improvements to enhance its performance under
various scenarios. Additionally, beyond carbonminimization, future
research should extend the evaluation framework to include a com-
prehensive assessment of the impact on drivers’ income. Balancing
environmental objectives with socioeconomic considerations is es-
sential to ensure that emission reduction efforts do not compromise
the livelihoods of those providing ride-sharing services. Finally,
we will publicly release E2-RideKit as an open-source toolkit to
facilitate research in emissions analysis of ridesharing ecosystems.
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