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I am a computer systems researcher focused on improving the sustainability of computing . My work pushes the boundaries
of computer systems design and operation to address emerging challenges of rapidly rising computing demand, increasing
energy availability constraints, and unintended socio-environmental implications of computing. These are challenges our
current infrastructure cannot solve. I take the requisite multidisciplinary approach that integrates domain-specific knowledge
from energy systems and industrial ecology with advanced computer systems approaches to develop high-impact solutions at
all layers of computer system stacks and all steps in their lifecycles. In manifesting real-world impact, my work has enhanced
the resource efficiency of hyperscale datacenters [36] and powered community testbeds for carbon-efficient applications [58].
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Fig.1: An overview of my prior (❶ – ❹) and future work ( F1 – F4 ) across computer systems’ lifecycle stages.

Research Overview Over the past two decades, energy efficiency optimizations have increased computing’s economic pro-
ductivity but have not reduced its aggregate energy demand or environmental impact. Moreover, we are approaching several
physical limits of energy efficiency that have tempered growth in energy demand, with the end of Dennard Scaling and the
slowdown of Moore’s Law [59, 61]. Moving forward, mitigating computing’s lifecycle environmental impact will require priori-
tizing carbon efficiency – measured by the work done per unit of carbon (and other greenhouse gases) emitted. Computing’s
operational emissions (produced by energy use) can be reduced by doing more work when and where low-carbon energy is
available. Reducing embodied carbon emissions (from the production and disposal of computing hardware and infrastructure)
necessitates reevaluating hardware design, procurement, and capacity provisioning strategies. Ultimately, improving carbon
efficiency requires fundamentally new and disruptive research across the computer system’s software and hardware stack, in-
cluding modeling, design, manufacturing, operation, and graceful lifecycle extension of computing infrastructure. Figure 1
shows the contributions I have made towards solving these challenges. I briefly overview representative contributions below.
1 Designing Software-Defined Energy Systems for Datacenters. Computer applications in datacenters lack visibility

and control over their energy supply, preventing them from adjusting power usage based on energy’s carbon intensity or
renewable energy availability. To address this issue, I have done foundational work on virtualizing datacenter energy systems
and exposing software-defined control to applications [29]. Inspired by Exokernel, these abstractions enable applications
to manage clean energy’s variability within their software stack directly, aligning performance needs with sustainability
goals by leveraging one or more dimensions of software flexibility and fault tolerance. Ecovisor’s software ecosystem is
open-source and deployed on an NSF-funded community testbed [30, 50, 53, 58].

2 Optimizing Carbon-Energy-Performance Tradeoffs. Improving carbon efficiency requires continuously optimizing work-
load execution. My work highlighted that simultaneously optimizing for carbon, energy, and performance is impossible.
Using this insight, I have designed systems for various applications that strategically trade energy or performance to achieve
carbon-efficiency improvements. For instance, I developed CarbonScaler [23], a carbon-aware autoscaler that scales up
(energy inefficiently) during low-carbon periods (carbon efficient) without increasing job completion time (maintaining
performance). CarbonScaler and related artifacts are open-source [51, 53].

3 Enabling Sustainable Decision-Making in Computing. Improving computing’s carbon efficiency through sustainable
choices across lifecycle stages – chip design, server procurement, and datacenter siting – often relies on data with sig-
nificant uncertainties. I have quantified uncertainty in carbon estimates, shown its impact on decision discernibility, and
developed strategies for decision-making under uncertainty. In doing so, I extended the Product Attributes and Impact
Algorithm (PAIA), a lifecycle analysis tool for ICT companies [52], to support uncertainty-driven quantitative assessments
of decisions [4]. I have also rigorously evaluated carbon-based metrics and their incentives for holistic carbon reduction [2].

4 Using Computing for Sustainable and Equitable Energy Transition. In transitioning our society away from fossil
fuels, it must be ensured that the decarbonization of societal sectors is cost-effective and equitable. I have extensively
used system modeling approaches to identify equitable energy transition pathways in residential buildings [20, 28, 31, 32,
34], employed computer networks concepts to ensure fair access to electric grids [24, 37, 41, 44, 46, 47], and used online
optimization approaches for wait-time-, emission- and equity-aware ride assignment in ridesharing platforms [13, 14, 18].
Across these threads, I have enabled computing stakeholders to reliably quantify and significantly reduce the lifecycle
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environmental impact of AI demand while demonstrating how AI can accelerate societal decarbonization. In doing so, I utilized
the system stack of software-defined infrastructure, distributed systems, resource management, and performance evaluation.
Prior & Ongoing Work I next provide details on how various threads in my prior and ongoing work, shown in Figure 1, fit
my overall research vision and the technical challenges I solved while making tangible contributions across all threads.

1 – Designing Software-Defined Energy Systems for Datacenters | Rep. Work: Ecovisor [29]. A few fundamental
challenges hinder carbon efficiency optimizations in existing systems: i) limited visibility into both their operational and em-
bodied carbon footprint; ii) insufficient flexibility to adapt to variations in carbon intensity and energy availability; iii) inadequate
programmability to expose software-defined interfaces for automated monitoring and control of energy and computing resources.
These gaps in visibility, flexibility, and programmability obstruct the development of carbon-efficient applications.
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Fig.2: Ecovisor’s architecture.

To address these challenges, I designed abstractions that virtualize the energy system
to provide applications with visibility and software-defined control of physical energy
systems (Figure 2). Specifically, I developed the Ecovisor prototype [29], which ex-
tends a container orchestration platform to enable fine-grained monitoring and control
of physical energy system components by exposing privileged API access to applications.
The Ecovisor prototype also supports stateful applications and vertical scaling through
LXD. It operates on a central server, exposing a REST API that allows applications to
register callback functions for energy and carbon monitoring and control. Virtualizing
the energy system required solving unique challenges related to software-defined power
management in solar- and storage-based grid-connected energy systems. For example,
I developed the Ecovisor prototype as a custom hardware-software solutions using off-the-shelf battery charge controllers,
direct current (DC) power supplies, and inverters. I also used Helios, a programmable software-defined solar module that I
previously designed [45], which provides a high-level interface to a DC-DC power optimizer, enabling remote, real-time control
of a solar module’s output via a REST API. Finally, I evaluated the Ecovisor prototype to demonstrate its benefits for a
wide range of applications. As one example, Ecovisor reduced the carbon footprint of training ResNet34 in PyTorch by 20%,
comparable to a system-level suspend-resume policy, while reducing training time by 2.58×.

Ecovisor enables the broadest range of policies by default to accommodate users and applications with varying character-
istics, goals, strategies, and tolerances for reducing carbon and energy. However, most applications do not need to modify their
logic and interact directly with the virtual energy system – third-party libraries and services can manage this complexity. To
illustrate this, I developed Carbon Containers (LXC-C), a system-level abstraction that dynamically regulates application-level
carbon emissions through performance-aware vertical scaling and migrations [30]. I also developed supporting tools to enable
non-intrusive energy monitoring, thermal energy management, and a fair distributed rate control [19, 21, 47].

2 – Optimizing Carbon-Energy-Performance Tradeoffs | Rep. Work: Overcommit [36] . The carbon footprint of com-
puting workloads can be reduced by improving efficiency in two ways: doing more work with the same hardware to improve
embodied carbon efficiency and doing more work with the same amount of carbon to enhance operational carbon efficiency.

Improving Embodied Carbon Efficiency. Datacenters often overcommit resources – that is, they schedule more tasks
on a server than its physical capacity – to increase typically low utilization rates of 30% to 60% [60]. However, determining
the right level of overcommitment is challenging: undercommitting wastes resources, while overcommitting risks performance
degradation. To address these challenges in Google’s Borg scheduler, I developed dynamic overcommit policies that predict
future resource usage and adjust the per-machine overcommit factor using lightweight predictors [36] that can be easily
deployed in production. Additionally, to test an arbitrary predictor before deployment in production, I built an Apache Beam-
based open-source simulator that mimics Borg’s machine-level component, Borglet. To quantify performance degradation, I
introduced violation rate, a metric that correlates with 99th percentile CPU scheduling latency – an important Borg Service
Level Objective (SLO) related to task wait times in the OS CPU scheduler. Initial deployment on 25,000 machines increased
usable capacity by 10-16%, leading to a full rollout across all Google datacenters, reducing infrastructure needs. I am currently
collaborating with researchers at Google to further enhance overcommitment by leveraging workload periodicity [6].

Improving Operational Carbon Efficiency. Improving operational carbon efficiency requires a nuanced approach: when
systems are energy inefficient, increasing energy efficiency directly enhances carbon efficiency; otherwise, improving carbon
efficiency may necessitate sacrificing energy efficiency [22]. My analysis revealed that while there are limits, the carbon
footprint of computing can be significantly reduced by strategically exploiting an application’s flexibility based on its carbon
intensity variability, performance flexibility, and workload characteristics [17]. To illustrate this for federated learning (FL), I
designed EcoLearn, which minimizes the carbon footprint of FL while maintaining model accuracy and training time [12].
EcoLearn achieved this by integrating carbon awareness into multiple aspects of FL training, including (i) selecting clients with
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high data utility and low carbon, (ii) provisioning more clients during initial training rounds, and (iii) mitigating stragglers using
dynamic carbon-aware client over-provisioning. I implemented EcoLearn in the Flower framework and showed that it reduced
the carbon footprint of training by up to 10.8×, while maintaining model accuracy and training time within ∼1% of state-
of-the-art carbon-agnostic approaches. Finally, I demonstrated that carbon footprint reduction opportunities are available
for a broad set of workloads – such as data processing, scientific computing, and AI training – and in various computing
environments, such as public clouds, on-premise datacenters, edge computing, and hybrid clouds [3, 7, 23, 26, 27, 35, 39].

3 – Enabling Sustainable Decision-Making in Computing | Rep. Work: Sunk Carbon Fallacy [2] Sustainable develop-
ment in computing requires rethinking decisions around hardware design, procurement, and datacenter placement [1, 5, 33].
These decisions are made infrequently over months or years with long-lasting effects. In this thread, I have worked on enabling
discernable decision-making under uncertainty and analyzed the choice of metrics for various decisions in computing’s lifecycle.

I have shown that embodied and operational carbon estimates, which inform such decisions, are riddled with uncertainty due
to the complexity of supply chains and variability in computer systems’ real-world performance [4]. In quantifying uncertainty
for the embodied carbon, I extended the Product Attributes and Impact Algorithm (PAIA), a lifecycle analysis tool used by
ICT companies, to generate distributions of estimates based on chip size, fabrication location, technology node, and other key
attributes. For operational carbon, I demonstrated that performance variability can significantly impact operational carbon
estimates, even in highly controlled environments. To reduce this uncertainty, I tailored the embodied and operational carbon
distributions to be decision-specific, exposing uncertainty only in attributes that decision-makers can affect. For example,
emissions from server transportation can be ignored when designing chips, while application performance variations can be
set aside when procuring servers. Finally, for an example of choosing a processor, I showed that there is only 1% chance of
discernibly picking a low-carbon processor, even if the chosen processor has almost 10% less expected embodied carbon value.

The metrics quantifying computing’s carbon footprint and making decisions are still evolving. I have evaluated these
metrics to assess the incentives they create for carbon-aware optimizations and their impact on holistic carbon footprint. For
example, I showed that while lifecycle emissions metrics help with procurement, they can increase emissions by 24% when
applied to job placement [2]. I also examined how confidential power purchase agreements (PPAs) influence public estimates
of carbon intensity, leading to overestimating carbon reductions by up to 55.1% and inadvertently increasing emissions by over
3% for carbon-aware optimizations [11]. Collectively, my research enhances the understanding of computing’s environmental
implications and provides tools for responsible development in computing and AI [1].

4 – Using Computing for Sustainable & Equitable Energy Transition. | Rep. Work: Tactical Energy Transition [24]
The net implications of computing and AI tools can be improved by using them to quantify and reduce societal emissions. I
have extensively worked on accelerating the decarbonization of the electric grid, buildings, and transportation sectors. First,
I have designed spatiotemporal scheduling algorithms for learning-augmented online optimization that use AI predictions to
achieve better average-case performance without sacrificing worst-case guarantees [8–10, 25]. These algorithms apply to a
broad set of sustainability problems, such as carbon-aware electric vehicle charging and computing workload execution. Second,
to improve the programmability of networked energy systems, I used physical models and data-driven ML methods for solar
PV performance modeling and forecasting [37, 40, 43], Bayesian methods for anomaly detection in solar panels [38, 42], and
distributed rate control approaches from computer networks for controlling distributed solar capacity [46, 47]. Third, to support
energy transition in the buildings sector, I have developed tools for tactical energy transition from gas-based heating to electric
heat pumps [24, 34], incentive design for solar energy adoption [15, 16, 28], and devising smart load-shedding solutions [48,
49]. Finally, I have devised carbon- and equity-aware ride assignment policies for ridesharing platforms [13, 14, 18].

Future Research Directions My work on building systems, carbon-efficient applications, and frameworks for sustainable AI
is evergreen. However, its capabilities must expand, and its application to improving computing’s carbon efficiency will need
to evolve, presenting a rich set of challenges as the insatiable demand for AI workloads grows, new application frameworks
emerge, tangible incentives to reduce carbon footprints are introduced, or planetary limits on materials and emissions are
reached. Below, I envision my research addressing existing and future challenges in enabling sustainable AI, shown in Figure 1.

F1 – Designing and Operating Sustainable Datacenters. Meeting the growing demand for AI workloads responsibly re-
quires a sustainability-aware, multidisciplinary approach that both looks inward to address user, application, and infrastructure
challenges in datacenters and outward to understand electric grid constraints and the challenges it faces for a reliable operation.

My work will lay the groundwork for sustainable datacenters by benchmarking their architecture, hardware, and workloads
to assess tradeoffs between performance, energy, and sustainability metrics, such as carbon and water footprint. In this effort, I
will develop system support that enables datacenters to automatically adjust their operations at minimum performance impact
based on grid conditions at short time scales while optimizing design for mutually beneficial coordination with the electric
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grid over the long term. I will develop higher-level frameworks for the sustainable operation of datacenters, respecting the
constraints and objectives of users, datacenter operators, and grid utilities. This will involve creating carbon-centered service
level agreements (cSLAs) that allow cloud platforms to offer sustainable solutions while enabling users to optimize sustainability
and financial goals. Finally, I will develop frameworks for datacenter–grid coordination, leveraging game-theoretic approaches
to design datacenter demand response solutions that offer meaningful incentives for participation.

F2 – Co-Adapting Emerging Applications and Heterogeneous Hardware. Modern cloud-native and AI inference-driven
applications are being deployed on heterogeneous (specialized and aging) hardware and are driving much of the increase in
computing demand. Prior work does not tackle optimizing the carbon efficiency of this evolving software-hardware ecosystem.

Interestingly, the defining aspects of emerging applications – scalability, resiliency, and redundancy – are also desired
characteristics for using power from highly variable and unreliable renewable energy sources. I will develop new abstractions for
developers and cloud operators to deploy modern applications on specialized (for performance) and aging (to reduce embodied
carbon) hardware run on intermittent renewable power (to reduce operational carbon) while balancing ease of use against deep
optimizations. However, these applications’ sheer scale and distributed nature make deploying any optimizations challenging,
and simple heuristics do not work well. While modern black-box ML/AI tools for systems are being used, they are generally
reserved for non-critical and particular use cases due to their poor generalization and lack of worst-case guarantees. I will
continue my work on combining AI advice with robust algorithms to provide good average-case performance and worst-case
guarantees when using AI tools for systems, ensuring they remain adaptive and robust in dynamic and uncertain environments.

F3 – Digital Twins-in-the-Loop (DTIL) Datacenters. There is no production-scale deployment of sustainable computing
solutions, such as spatiotemporal workload migrations and datacenter demand response. Beyond the lack of incentives, the
key obstacle is an obscured view of sustainability-driven optimizations’ financial, technical, and infrastructure implications.

My research will lead an effort to build holistic end-to-end models for distributed datacenter infrastructure that accounts for
cost, energy, carbon, and performance impacts of carbon-aware optimizations. For instance, I will develop realistic models for
workload migrations’ cost and carbon impacts in the network. Similarly, I will also focus on the challenging and pressing issue
of modeling the tradeoffs between redundancy, availability, and embodied carbon. The modeling effort will drive a reassessment
of the relentless pursuit of marginal gains in performance – without demonstrated system – scale benefits—and identify realistic
carbon-aware optimizations at scale. In the long run, guided by the modeling efforts, I aim to leverage AI tools to design digital
twin-in-the-loop (DTiL) datacenters with a symbiotic relationship with the physical infrastructure. The DTiL datacenters will
use digital twins to optimize operations at short timescales and inform design at long timescales.

F4 – Computing-Energy-Society Nexus. A push towards electrification and embedded intelligence across various societal
sectors creates interdependencies that did not exist before. For instance, smart electric cars are changing the landscape
of personal transportation: they require computing resources across the stack (device, edge, cloud) and create electricity
couplings between residential and commercial buildings. Ultimately, datacenters, the electric grid, and other societal sectors
are increasingly coupled due to reliance on computing and electric grids. This means that a siloed focus on improving resource
efficiency in each sector is unlikely to yield practical solutions that lead to societal-scale decarbonization [57]. My research
will design computing solutions (infrastructure and software) that power computational approaches to holistic cross-domain
decarbonization. The geographical distribution of demand (e.g., roadside, buildings, cloud-based) and its varying temporal
characteristics (e.g., ephemeral on the roadside, periodic in buildings, continuous analytics in the cloud) will require hardware-
software solutions that sustainably serve cross-sectoral approaches instead of domain-specific over-provisioned solutions.

Concluding Remarks The defining technological trend of our times is the AI-driven exponential growth in computing demand
and the challenges the current systems face in sustainably satisfying it. Consequently, my research topics are the top priorities
for tech companies, academic institutions, the Department of Energy, and the National Science Foundation. NSF funds several
aspects of my work through programs such as Design for Environmental Sustainability in Computing [55], Critical Aspects
of Sustainability [54], and Environmental Sustainability [56]. However, computing’s lifecycle emissions span and intersect
multiple societal sectors, meaning that no single field of science, government entity, or large tech company can mitigate the
existential threat posed by climate change and computing’s growing contributions to it. As a result, I have fully embraced
a multidisciplinary approach to problem-solving, uniting computer science, engineering, and traditional sciences to accelerate
the development of impactful solutions. My role as the Computing & Climate Impact Fellow at the highly interdisciplinary
MIT Climate & Sustainability Consortium (MCSC) exemplifies it. I am uniquely positioned to make impactful contributions
to the field of sustainability due to my diverse academic training (power engineering, energy systems engineering, & computer
science), a track record of publications across domains (ACM SIGs on Energy, Metrics, Architecture, Operating Systems, and
Computers & Society), and industry collaborations (Google, Amazon, Meta, IBM, VMWare, Telefonica, and many startups).
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