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Abstract
As large-scale data processing workloads continue to grow,
their carbon footprint raises concerns. Prior research on
carbon-aware schedulers has focused on shifting computa-
tion to align with the availability of low-carbon energy, but
these approaches assume that each task can be executed
independently. In contrast, data processing jobs have prece-
dence constraints that complicate decisions, since delaying
an upstream “bottleneck” task to a low-carbon period also
blocks downstream tasks, impacting makespan. In this paper,
we show that carbon-aware scheduling for data processing
benefits from knowledge of both time-varying carbon and
precedence constraints. Our main contribution is PCAPS, a
carbon-aware scheduler that builds on state-of-the-art scor-
ing or probability-based techniques – in doing so, it explic-
itly relates the structural importance of each task against
the time-varying characteristics of carbon intensity. To il-
lustrate gains due to fine-grained task-level scheduling, we
also study CAP, a wrapper for any carbon-agnostic scheduler
that generalizes the provisioning ideas of PCAPS. Both tech-
niques allow a user-configurable priority between carbon
and makespan, and we give basic analytic results to relate
the trade-off between these objectives. Our prototype on a
100-node Kubernetes cluster shows that a moderate config-
uration of PCAPS reduces carbon footprint by up to 32.9%
without significantly impacting total efficiency.

CCS Concepts: • Software and its engineering→ Sched-
uling; • Social and professional topics → Sustainability.
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1 Introduction
Concerns about the climate impact of machine learning (ML)
and artificial intelligence (AI) models have primarily con-
sidered the footprint of training [11, 22] or, in some cases,
inference [15]. However, as model sizes have ballooned, the
data processing tasks that must be completed before training
account for almost one-third of the cumulative computation
for an AI model during its life cycle [23].
Therefore, efforts towards sustainable AI must consider

and optimize the carbon footprint of data processing. Even
beyond sustainability, companies such as Microsoft have im-
plemented internal carbon pricing for short- and long-term
decisions [7, 19] that assign financial responsibility for oper-
ational CO2 emissions. In data centers, current schedulers do
not consider the time-varying aspect of carbon intensity and
the resulting compute-carbon impact – this must change to
accommodate these additional concerns.
Data processing (e.g., Spark) workloads are composed of

precedence-constrained tasks where e.g., the outputs of one
operation are the inputs to another [24], forming a directed
acyclic dependency graph (DAG). Optimal scheduling of
precedence-constrained jobs is known to be NP-hard [14], so
existing work is split between simple settings that are studied
theoretically to obtain approximation guarantees [3, 4, 13,
16] and experimental settings where data-driven heuristics
and evolutionary approaches have been developed [5, 10, 12,
18, 25]. A select few works have considered multi-objective
variants of the problem that balance e.g., energy-efficiency
or cost against performance [8, 17, 20]. Carbon-efficiency,
however, often conflicts with energy-efficiency: the time-
varying nature of the grid means that minimizing carbon
may require energy-inefficient processing “bursts” during
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Figure 1. Four schedules for a motivating DAG and 18-hour carbon intensity trace (on the left hand side). Compared to a
carbon-agnostic first-in first-out (FIFO) scheduler, the time-optimal schedule (T-OPT) prioritizes green and purple stages early
to reduce makespan. A carbon-aware-optimal schedule (C-OPT) with a deadline to finish the DAG within 18 hours reduces
carbon emissions by 51.2%, at the expense of increasing makespan by 28.5% compared to FIFO. By prioritizing green and purple
stages during high-carbon periods, PCAPS reduces carbon by 23.1% and still reduces makespan by 7% compared to FIFO.

low-carbon periods. To address the multi-objective setting of
carbon-aware scheduling for precedence-constrained tasks,
we propose a middle-ground approach: namely, we seek an
interpretable framework that comes with provable trade-
off guarantees between carbon emissions and performance
while catering to realistic scenarios. Our main contributions
are as follows:
1. PCAPS (Precedence- and Carbon-Aware Provisioning

and Scheduling), a carbon-aware scheduler that defines a
notion of relative importance for each task to make fine-
grained scheduling decisions and achieve a favorable
trade-off between carbon savings and performance.

2. CAP (Carbon-Aware Provisioning), a simplification of
PCAPS that reconfigures the resources available to data
processing jobs without replacing an existing scheduler,
making it easier to implement (see full paper).

3. We evaluate PCAPS and CAP in experiments using a Spark
simulator and prototypes for Spark on Kubernetes. 1

2 Carbon-Aware DAG Scheduling Problem
Each job is represented as a directed acyclic graph (DAG)
J = {V, E}, where each node in V is a task, and each
edge in E encodes precedence constraints between tasks –
e.g., for tasks 𝑗, 𝑗 ′ ∈ V , an edge 𝑗 → 𝑗 ′ indicates that 𝑗 ′
cannot start until after 𝑗 has completed. We index contin-
uous time by 𝑡 ≥ 0. The goal of a typical scheduler is per-
formance in terms of makespan or average job completion
time. We additionally consider the goal of carbon emissions –
given a time-varying carbon signal described by a function
𝑐 (𝑡) : 𝑡 ≥ 0, the objective is to minimize a combination of
typical metrics (i.e., makespan) and the overall carbon foot-
print (on a global, cluster basis). In an online setting, future
carbon values are unknown to the scheduler. We follow prior
work [2] and assume there are constants 𝐿 and𝑈 such that
𝐿 ≤ 𝑐 (𝑡) ≤ 𝑈 : 𝑡 ≥ 0. In practice, these values capture e.g.,
short-term forecasts of grid carbon conditions. Due to the ad-
ditional objective of carbon, an scheduler must consider the
time-varying carbon intensity while scheduling the nodes of

1Full paper and code: github.com/umass-solar/carbon-aware-dag.

a job DAG(s) to balance the goal of reducing carbon footprint
against traditional metrics of performance – see Fig. 1 for an
illustration of this trade-off for four different schedules.
3 Design & Evaluation
Webriefly detail the design of our PCAPS scheduler and report
our main experiment results – see our full paper for details.
The key idea of PCAPS is a notion of relative importance

inferred from a set of probabilities or scores assigned to tasks
that are ready to execute. Many state-of-the-art DAG sched-
ulers (e.g,. Decima [18], Graphene [9]) operate by scoring
(resp. assigning probabilities to) all tasks. In doing so, these
techniques encode important information about DAG struc-
ture – a high score or probability is likely to indicate e.g.,
a bottleneck task. PCAPS builds on top of this existing intu-
ition – for a given task 𝑣 with score/probability 𝑝𝑣 , we define
the relative importance 𝑟𝑣 := 𝑝𝑣/max𝑢∈A 𝑝𝑢 ∈ [0, 1], where A
denotes the set of tasks that are ready to execute.

For carbon-awareness, PCAPS is designed to ramp up dur-
ing low-carbon periods and ramp down during high-carbon
periods, while ensuring that certain bottleneck tasks are still
scheduled during high-carbon periods to avoid adversely
increasing makespan. To do so, PCAPS takes cues from the
related theoretical literature on carbon-aware scheduling [2]

Figure 2. Illustrating PCAPS’s carbon-awareness filter. Jobs
A and B are DAGs found in TPC-H queries and Alibaba
traces [1, 21]. Highlighted nodes detail two possible out-
comes. In job A, the highlighted node has low relative im-
portance, so it is deferred. In contrast, job B’s highlighted
node is a bottleneck task with high relative importance: even
when the current carbon intensity is high, such tasks are
scheduled to avoid increasing makespan.

github.com/umass-solar/carbon-aware-dag
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and defines a threshold function Ψ𝛾 that considers the cur-
rent carbon and the relative importance of a task. 𝛾 ∈ [0, 1]
is a user-specified parameter that controls the “strictness”
of the function: 𝛾 = 0 recovers carbon-agnostic actions,
while 𝛾 = 1 is maximally carbon-aware. Given a task’s rel-
ative importance 𝑟 , we define Ψ𝛾 (𝑟 ) := (𝛾𝐿 + (1 − 𝛾)𝑈 ) +
[𝑈 − (𝛾𝐿 + (1 − 𝛾)𝑈 )] exp(𝛾𝑟 )−1

exp(𝛾 )−1 . PCAPS uses the Ψ𝛾 function
in a carbon-awareness filter that decides which tasks can
be scheduled – see Fig. 2 for an intuition of this. In the full
paper, we give analytic bounds to characterize the trade-off
between carbon savings and makespan for PCAPS.

We implement PCAPS and CAP as a prototype for Spark on
Kubernetes, and conduct additional large-scale experiments
in a realistic Spark simulator. We use workloads from TPC-H
benchmarks [21] and Alibaba production DAG traces [1],
alongside historical carbon traces for six grid regions from
Electricity Maps [6]. In addition to the default scheduling
behavior of Spark on Kubernetes, we implement the Decima
scheduler [18] as a carbon-agnostic baseline. Decima uses
reinforcement learning to assign a probability to each task –
in our PCAPS implementation, we use Decima’s probabilities
for the computation of relative importance. Table 1 reports
carbon reduction, makespan, and job completion time met-
rics for all schedulers in our prototype experiments – see
the full paper for individual experiments and results.

Table 1. Summary of prototype results averaged over all
tested carbon traces. Each metric is normalized with respect
to the Spark / Kubernetes default behavior. PCAPS and CAP
are configured to be moderately carbon aware (i.e., 𝛾 = 0.5).
Metric normalized
w.r.t. Default Default Decima [18] CAP PCAPS

Carbon Reduction (%) 0% 1.2% 24.7% 32.9%
Avg. Makespan 1.0 0.857 1.126 1.013
Avg. JCT 1.0 0.852 1.996 1.381
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